《因数和倍数教案》因数和倍数教案(一):教学目标1、知识与技能掌握因数、倍数的概念,明白因数、倍数的相互依存关系。2、过程与方法透过自主探究,使学生学会用因数、倍数描述两个数之间的关系。3、情感态度与价值观使学生感悟到数学知识的内在联系的逻辑之美。教学重难点教学重点掌握找一个数的因数、倍数的方法。教学难点能熟练地找一个数的因数和倍数。教学工具课件、投影教学过程一、迁移引入同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗(课件出示:0,1,2,3,4,5)这些自然数。(课件去0)去0后这又是什么数(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。板书:因数和倍数二、情境创设,探究新知1、理解整除的好处。
(1)出示例1,在前面学习中,我们见过下面的算式。122=683=22306=5197=2595=1.8268=3.252010=22121=1639=7你能把这些算式分类吗(2)分类所得:第类122=62010=2306=52121=1639=7第类83=2295=1.8197=25268=3.25(3)观察发现,合作交流。观察算式,说一说谁是谁的倍数,谁是谁的约数。1、理解因数、倍数的好处。122=6中,我们就说12是2的倍数,2是12的因数。126=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)3、总结归纳(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。(2)因数与倍数是相互依存的关系。4、注意:
为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。5、做一做。下面的4组数中,谁是谁的因数谁是谁的倍数4和24361375258196、教学例218的因数有哪几个18的因数有1、2、3、6、9、18。也能够这样用图表示。19的因数1,2,3,6,9,1830的因数有哪些36呢7、教学例32的倍数有哪些2的倍数有2、4、6、82的倍数2,4,6,8,10,12,14,3的倍数有哪些5呢8、小组讨论,归纳总结一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍一个数的因数的个数是有限的,一个数的倍数的个数是无限的。课后小结
一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。课后习题1、填空。(1)36是4的(数。(2)5是25的(。(3)2.5是0.5的(倍。2、下面各组数中,有因数和倍数关系的有哪些(1)18和3(2)120和60(3)45和15(4)33和73、24和35的因数都有哪些板书一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。因数和倍数教案(二):一、教学目标(一)知识与技能理解因数和倍数的好处以及两者之间相互依存的关系,掌握找一个数的因数和倍数的方法,发现一个数的倍数、因数中最大的数、最小的数,及因数和倍数个数方面的特征。(二)过程与方法透过整数的乘除运算认识因数和倍数的好处,自主探索和总结出求一个数的因数和倍数的方法。(三)情感态度和价值观在探索的过程中体会数学知识之间的内在联系,在解决问题的过程中培养学生思维的有序性和条理性。二、教学重难点教学难点:自主探索有序地找一个数的因数和倍数的方法。
三、教学准备教学课件。四、教学过程(一)理解因数和倍数的好处教学例1:1.观察算式的特点,进行分类。(1)仔细观察算式的特点,你能把这些算式分类吗?(2)交流学生的分类状况。(预设:学生会根据算式的计算结果分成两类)第一类是被除数、除数、商都是整数;第二类是被除数、除数都是整数,而商不是整数。2.明确因数和倍数的好处。(1)同学们,在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。例如,122=6,我们就说12是2的倍数,2是12的因数。126=2,我们就说12是6的倍数,6是12的因数。(2)在第一类算式中找一个算式,说一说,谁是谁的因数?谁是谁的倍数?(3)强调一点:为了方便,在研究倍数与因数的时候,我们所说的数指的是自然数(一般不包括0)。【设计意图】引导学生从整数的除法算式中认识因数和倍数的好处,简洁明了,同时为学习因数和倍数的依存关系进行有效铺垫。3.理解因数和倍数的依存关系。(1)独立完成教材第5页做一做。(2)我们能不能说4是因数24是倍数呢?表述时就应注意什么?【设计意图】引导学生在理解的基础上进行正确表述:因数和倍数是相互依存的,不是单独存在的。我们不能说4是因数,24是倍数,而就应说4是24的因数,24是4的倍数。4.理解一个数的因数和乘法算式中的因数的区别以及一个数的倍数与倍的区别。51)这天学的一个数的因数与以前乘法算式中的因数有什么区别呢?课件出示:乘法算式中的因数是相对于积而言的,能够是整数,也能够是小数、分数;而一个数的因
数是相对于倍数而言的,它只能是整数。12)这天学的倍数与以前的倍又有什么不同呢?倍数是相对于因数而言的,只适用于整数;而倍适用于小数、分数、整数。23)交流汇报。【设计意图】一个数的因数和倍数与学生已学过的乘法算式中的因数以及倍的概念既有联系又有区别,学生比较容易混淆,这也是学习一个数的因数和倍数好处的难点。透过观察、比较、交流,引导学生发现一个数的因数和乘法算式中的因数的区别以及一个数的倍数与倍的区别。(二)找一个数的因数教学例2:1.探究找18的因数的方法。(1)18的因数有哪些?你是怎样找的?(2)交流方法。预设:方法一:根据因数和倍数的好处,透过除法算式找18的因数。因为181=18,所以1和18是18的因数。因为182=9,所以2和9是18的因数。因为183=6,所以3和6是18的因数。方法二:根据寻找哪两个整数相乘的积是18,寻找18的因数。因为118=18,所以1和18是18的因数。因为29=18,所以2和9是18的因数。因为36=18,所以3和6是18的因数。2.明确18的因数的表示方法。(1)我们怎样来表示18的因数有哪些呢?怎样表示简洁明了?(2)交流方法。预设:列举法,18的因数有:1,2,3,6,9,18。图示法(如下图所示)。
1.练习找一个数的因数。21)你能找出30的因数有哪些吗?36的因数呢?32)怎样找才能不遗漏、不重复地找出一个数的所有因数?【设计意图】让学生透过自主探索、交流,获得找一个数的因数的不同方法,在练习中体会一对一对有序地找一个数的因数,避免遗漏或重复。初步感受一个数的因数的个数是有限的,以及最大因数、最小因数的特征。(三)找一个数的倍数教学例3:1.探究找2的倍数的方法。(1)2的倍数有哪些?你是怎样找的?(2)交流方法。预设:方法一:利用除法算式找2的倍数。因为22=1,所以2是2的倍数。因为42=2,所以4是2的倍数。因为62=3,所以6是2的倍数。方法二:利用乘法算式找2的倍数。因为21=2,所以2是2的倍数。因为22=4,所以4是2的倍数。因为23=6,所以6是2的倍数。(3)2的倍数能写完吗?你能继续找吗?写不完怎样办?(4)根据前面的经验,试着表示出2的倍数有哪些?(预设:列举法、图示法)2.练习找一个数的倍数。你能找出3的倍数有哪些吗?5的倍数呢?【设计意图】在理解倍数的基础上,让学生进一步体会有序思考的必要性。初步感受一个数的倍数的个数是无限的,以及最小倍数的特征。(四)一个数的因数与倍数的特征1.从前面找因数和倍数的过程中,你有什么发现?
2.讨论交流。1.归纳总结。预设:一个数的因数的个数是有限的,最小的因数是1,最大的因数是它本身;一个数的倍数的个数是无限的,没有最大的倍数,最小的倍数是它本身。1是所有非零自然数的因数。(五)巩固练习1.课件出示教材第7页练习二第1题。(1)想一想,怎样找不会遗漏、不会重复?(2)哪些数既是36的因数,也是60的因数?【设计意图】透过练习,让学生再次体会1是所有非零自然数的因数一个数最大的因数是它本身和一个数的因数的个数是有限的。同时,渗透两个数的公因数的好处。2.课件出示教材第7页练习二第3题。(1)学生独立完成,交流答案。(2)思考:5的倍数有什么特征?【设计意图】渗透5的倍数的特征。3.课件出示教材第7页练习二第5题。(1)学生独立完成,交流答案。(2)你能改正错误的说法吗?(六)全课总结,交流收获这节课我们学了哪些知识?你有什么收获?因数和倍数教案(三):因数和倍数教学目标:知识与技能、过程与方法:1、从操作活动中理解因数和倍数的好处,会决定一个数是不是另一个数的因数或倍数。情感态度与价值观:2、培养学生抽象、概括的潜力,渗透事物之间相互联系、相互依存的辩证唯物主义的观
点。1、培养学生的合作意识、探索意识,以及热爱数学学习的情感。教学重、难点:1、理解因数和倍数的含义。2、学会求一个数的因数或倍数的方法。教学准备:课件教学过程设计:一、创设情境,引入新课师:人与人之间存在着许多种关系,你们和爸爸(妈妈)的关系是?生:父子(父母、母子、母女)关系。师:我和你们的关系是?生:师生关系。师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一齐探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)二、探究新知(一)学习因数和倍数的概念3、出示主题图,让学生各列一道乘法算式。4、师:看你能不能读懂下面的算式?出示:因为26=12所以2是12的因数,6也是12的因数;12是2的倍数,12也是6的倍数。3、师:你能不能用同样的方法说说另一道算式?(指名生说一说)4、师:你有没有明白因数和倍数的关系了?那你还能找出12的其他因数吗?
(二)、学习求一个的因数或倍数的方法。A、找因数:1、出示例1:18的因数有哪几个?从12的因数能够看得出,一个数的因数还不止一个,那我们一齐找找看18的因数有哪些?学生尝试完成:汇报(18的因数有:1,2,3,6,9,18)师:说说看你是怎样找的?(生:用整除的方法,181=18,182=9,183=6,184=;用乘法一对一对找,如118=18,29=18)师:18的因数中,最小的是几?最大的是几?我们在写的时候一般都是从小到大排列的。2、用这样的方法,请你再找一找36的因数有那些?汇报36的因数有:1,2,3,4,6,9,12,18,36师:你是怎样找的?举错例(1,2,3,4,6,6,9,12,18,36)师:这样写能够吗?为什么?(不能够,因为重复的因数只要写一个就能够了,所以不需要写两个6)仔细看看,36的因数中,最小的是几,最大的是几?看来,任何一个数的因数,最小的必须是(),而最大的必须是()。3、你还想找哪个数的因数?(18、5、42)请你选取其中的一个在自练本上写一写,然后汇报。4、其实写一个数的因数除了这样写以外,还能够用集合表示。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?从最小的自然数1找起,也就是从最小的因数找起,一向找到它的本身,找的过程中一对一对找,写的时候从小到大写。B、找倍数:4、我们一齐找到了18的因数,那2的倍数你能找出来吗?汇报:2、4、6、8、10、16、师:为什么找不完你是怎样找到这些倍数的(生:只要用2去乘1、乘2、乘3、乘4、)那么2的倍数最小
是几最大的你能找到吗1、让学生完成做一做1、2小题:找3和5的倍数。汇报3的倍数有:3,6,9,12改写成:3的倍数有:3,6,9,12,你是怎样找的?(用3分别乘以1,2,3,倍)2的倍数有:5,10,15,20,师:表示一个数的倍数状况,除了用这种文字叙述的方法外,还能够用集合来表示2的倍数3的倍数5的倍数师:我们明白一个数的因数的个数是有限的,那么一个数的倍数个数是怎样样的呢?(一个数的倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数)三、课堂小结我们一齐来回忆一下,这节课我们重点研究了一个什么问题?你有什么收获呢?板书设计:因数与倍数因数与倍数指的是数与数之间的关系。一个数因数的个数是有限的,最小的因数是1最大的因数是它本身。一个数倍数的个数是无限的,最小的倍数是它本身,没有最大的倍数。教学反思:教材上,探究因数这部分的例题比较少,只有一个:找18的因数。根据学生的实际状况,我进行了重组教材,先让学生根据乘法算式一对对地找出15的因数,在此基础上再让学生探究18的因数。透过质疑:有什么办法能保证既找全又不遗漏呢?让学生思考并发现:按照必须的顺序一对对的找因数,能既找全又不遗漏。进而又借助体态语言打手势,让学生说出30和36的因数,到达了巩固练习的目的。又明确了像36当两个因数相等时,只写其中的一个6。这样设计由易到难,由浅入深,贴合了学生的认知规律。因数和倍数教案(四):教学资料:人教版1216页的相关资料。教学目标。1、让学生理解倍数和因数的好处,掌握找一个数的倍数和因数的方法,发现一个数的倍
数、因数中最大的数、最小的数及其个数方面的特征。能在1100的自然数中找出10以内某个数的所有倍数,能找出100以内某个数的所有因数。1、让学生初步意识到能够从一个新的角度来研究非零自然数的特征及其相互关系,培养学生的观察、分析和抽象概括潜力,学会有序地思考问题,体会数学资料的奇妙、搞笑,产生对数学的好奇心。教学重点:让学生理解倍数和因数的好处。教学难点:探索并掌握找一个数的倍数和因数的方法,发现一个数的倍数、因数中最大的数、最小的数及其个数方面的特征。教学过程:一、操作空间,初步感知1.同桌用12块完全一样的小正方形拼成一个长方形,有几种拼法?要求:能想象的就想象,不能想象的才借助小正方形摆一摆。2.学生动手操作,并与同桌交流摆法。3.请用算式表达你的摆法。汇报:112=12,26=12,34=12。【评析】透过让学生动手操作、想象、表达等环节,既为新知探索带给材料,又孕育求一个数的因数的思考方法。二、探索空间,理解新知。1.理解因数和倍数(1)我们就以34=12这道乘法算式为例,数学上我们说12是3的倍数,12也是4的倍数,3和4时12的因数。这就是我们这天所要研究的因数和倍数。师板书:因数和倍数师:根据黑板上的另两道算式,自己试着说说谁是谁的倍数,谁是谁的因数?指名口答。(2)追问:如果说12是倍数,2是因数,能够吗?为什么?教师:看来,倍数和因数的关系是相互的,我们只能说某个数是某个数的倍数,某个数是某个数的因数,不能够直接说某数是倍数,某数是因数。而且为了方便,我们在研究倍数和因数时,所说的数一般指不是0的自然数。(3)拓展:出示72页想想做做第一题。同桌互练,指名口答。
248=3看来,我(4)师:老师还写了一个算式,从这个算式里你能找到因数和倍数吗?们不仅仅能够根据乘法算式找因数和倍数,也能够根据除法算式找因数和倍数。(5)试一试:从中选取两个数,用这天学的知识随便说两句话。46824151、探索求一个数的倍数的方法(1)师:刚才我们已经明白12是3的倍数,那还有哪些数也是3的倍数呢?请同学们自己找一找?同桌交流交流。屏幕显示:3的倍数有哪些?指名学生回答。(2)师:什么样的数是3的倍数?明确:3的倍数是3与一个数相乘的积。如,31=(),32=(),33=(),括号里的数都是3的倍数。教师:谁能按从小到大的顺序有条理地说出3的倍数?能把3的倍数全部说完吗?就应怎样表示?根据学生的口答,屏幕显示:3的倍数有3、6、9、12、15。(3)请你用同样的方法,找找2的倍数和5的倍数?(4)提问:请同学们观察,刚才所找的2、3、5的倍数,你有什么发现?能够小组内讨论交流。(5)、根据学生的交流归纳:一个数的倍数中,最小的是它本身,没有最大的倍数;一个数倍数的个数是无限的。【评析】由于有了有序思考的基础,求一个数的倍数水到渠成,本环节重在思考方法上的提升。3、探索求一个数的因数的方法(1)师:透过刚才的动脑思考,你们已经能够有序地找出一个数的倍数了,你能找出36的所有因数吗?出示要求:①可独立完成,也可同桌合作。②可借助刚才找出12的所有因数的方法。③写出36的所有因数。4想一想,怎样找才能保证既不重复,又不遗漏。(2)学生尝试。搜集学生作业,交流各自找一个数因数的方法。方法1:想乘法算式361=36;方法2:想除法算式361=36;方法3:想乘法口诀;(在交流中学生很有可能不能说完整,而是透过互相补充得到36所有的因数)板书:36的因数有:1,2,3,4,6,9,12,18,36。(3)怎样找才能不重复不遗漏?在小组里说一说。学生想到的方法可能是:从小到大找;一对一对找。
(4)试一试:你能找出15和16所有的因数吗?(5)观察36、15和16的所有因数,你有什么发现吗?(小结出一个数最小的因数是1,最大的是本身)【评析】学生围绕教师出示的思考步骤,寻找36的所有因数。既留足了自主探索的空间,又在方法上有所引导,避免了学生的盲目猜测。透过展示、比较不同的答案,发现了按顺序一对一对找的好方法,突出了有序思考的重要性,有效地突破了教学的难点。全课总结1、这天我们一齐认识了倍数和因数,阅读课本70页,你还能发现什么?2、游戏:对号入座规则:老师出一个数,看你卡片上的数是否贴合下面的条件,贴合的请站起来并且举起你的卡片。师:我是45,我要找我的因数。我是6,我要找我的倍数。我是8,我要找我的因数,同时我也要找我的倍数。坐着的同学,下面老师要出个什么数字,不管是倍数还是因数,你们都能全部站起来吗?我是1,我找我的倍数。学生站起后宣布下课。教学反思:本课教学设计重在让学生透过自主探索,掌握求一个数的因数和倍数的方法,体验有序思考的重要性。体现了以下两个特点:一、留足空间,让探索有质量。留足思维空间,才能充分调动多种感官参与学习,充分发挥知识经验和生活经验,使探索成为知识不断提升、思维不断发展、情感不断丰富的过程。第一、把让同桌同学借助12块完全一样的正方形拼成一个长方形。由于方法的多样性,为不同思维的展现带给了空间。第二:放手让每个同学找出36的所有因数,由于个人经验和思维的差异性,出现了不同的答案,但这些不同的答案却成为探索新知的资源,在比较不同的答案中归纳出求一个数的因数的思考方法。第三:透过观察36,15,16的因数和3,6的倍数,你发现了什么?由于带给了丰富的观察对象,保证了观察的目的性。第三:让学生选用4,6,8,24,1,5中的一些数字,用这天学习的知识说一句话。不拘形式的说话空间,不仅仅体现了差异性教学,更是体现了不同的人在数学上的不同发展。二、适度引导,让探索有方向。引导与探索并不矛盾,探索前的适度引导正是让探索走得更远。探索12块完全一样的正方形拼成一个长方形,有几种拼法?教师提示能想象的就想象,不能想象的可借助小正方形摆一摆。这样的引导,是尊重学生不同思维的有效引导。在找36的所有因数时,教师出示4条要求,既是引导学生思考的方向,又是提醒学生探索的任务。在让学生观察几个数的因数和倍数时,引导学生观察最大数和最小数,有什么发现?这样的引导,避免了学生的盲目观察。可见,适度的引导,保证了自主探索思维的方向性和顺畅性。整堂课,学生想象丰富、思维活跃、思考有序。整个认知过程是体验不断丰富、概念不断构成、知识不断建构的过程。因数和倍数教案(五):教学目标
让学生能利用最大公因数知识解决生活中的实际问题。教学重难点教学重点利用最大公因数知识解决生活中的实际问题。教学难点利用最大公因数知识解决生活中的实际问题。教学工具课件教学过程一、导入新课1.什么是公因数什么是最大公因数2.找出每组数的最大公因数。5.和1521和2830和188和911和3312和42过渡:在现实生活中,有的问题需要用最大公因数的明白来解决,这就是我们这天要学习的资料。二、新课教学出示教材第62页例3。(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。(2)学生以小组为单位,探究如何拼摆。每组4人,在课前印好画有长方形的方格纸,每人选取一种边长的方砖,试一试,只要画满一条长边,一条宽边就能够。教师巡视指导,辅导学生。(3)多媒体演示拼摆过程,进一步验证学生动手操作的状况。(4)教师:就应怎样选取方砖来铺地呢透过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长务必既是16的因数,又是12的因数。
(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1dm、2dm、4dm的地砖,边长最大的是4dm。三、巩固练习1.教材第63页练习十五第5题。此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成同样大小的正方形而没有剩余。正方形的边长务必既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。2.教材第63页练习十五第6题。此题也是有关两数最大公因数的实际问题,要使每排的人数相等则每排的人数务必既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。3.教材第64页练习十五第9题。此题检查学生当两数是倍数关系、互质关系、一般关系状况下求最大公因数的潜力。参考答案:5.长方形的边长是70和50的最大公因数是10cm,所以小正方形的边长最长是10cm。6.每排人数是36和48的最大公因数,是12人。男生:4812=4(排)女生:3612=3(排)9.(1)A(2)C(3)C四、课堂小结这天你学习了什么有什么收获五、布置作业教材第64页练习十五第7、8、10题。梦倒塌的地方把青苔清理干净我又筑起了我的梦答案很长,我准备用一生的时间来回答,你准备要听了吗?不要因为走得太远,忘了我们为什么出发。在青山绿水之间,我想牵着你的手,走过这座桥,桥上是绿叶红花,桥下是流水人家,桥的那头是青丝,桥的这头是白发。从卖气球的人那里,每个孩子牵走一个心愿。的最后一抹夕阳,千丝万缕的时光嘀嗒着薄不堪负的青春,逝去的,忘记的,等待的。时间又是那么的快,从初春的融雪到隆冬的凝雪,川流不息的时光吱呀过满负积雪的树枝,渐远的,褪色的,期盼的。不过就是别人写的一纸韶华“,豆蔻年华,放荡不羁,然后尘埃落定,碌碌一生。茶若相似,味不必如一。但凡茗茶,一泡苦涩,二泡甘香,三泡浓沉,四泡清洌,五泡清淡,此后,再好的茶也索然无味。诚似人生五种,年少青涩,青春芳醇,中年沉重,壮年回香,老年无味。玄因为有了因为,所以有了所以既然已成既然,何必再说何必。认识你越久,越觉得你是我人生行路中一处清喜的水泽。几次相忘于世,总在山穷水尽又悄然相见,算来即是一种不舍。如果有来生,要做一只鸟,飞越永恒,没有迷途的苦恼。东方有火红的希望,南方有温暖的巢床,向西逐退残阳,向北唤醒芬芳。如果有来生,希望每次相遇,都能化为永恒。我一直以为山是水的故事,云是风的故事,你是我的故事,可是却不知道,我是不是你的故事。原谅成熟是一种明亮而不刺眼的光辉,一种圆润而不腻耳的声响,一种不再需要对别人察言观色的从容,一种终于停止向周围申诉求告的大气,一种不理会喧闹的微笑,一种洗刷了偏激的淡漠,一种无需声张的厚实,一种能够看的很远却并不陡峭的高度。我荒废的今日,正是昨日殒身之人祈求的明日。其实人跟树是一样的,越是向往高处的阳光,它的根就越要伸向黑暗的地底。如果结果不如你所愿就在尘埃落定前奋力一搏我要有能做我自己的自由,和敢做我自己的胆量。我也愿学习蝴蝶,一再的蜕变,一再的祝愿,既不思虑,也不彷徨;既不回顾,也不忧伤。愿妻娘子相离之后,重梳蝉鬓,美扫娥眉,巧逞窈窕之姿,选聘高官之主,弄影庭前,美效琴瑟合韵之态。解怨释结,更莫相憎;一别两宽,各生欢喜。一些年之后,我要跟你去山下人迹稀少的小镇生活。清晨爬到高山巅顶,下山去集市买蔬菜水果。烹煮打扫。午后读一本书。晚上在杏花树下喝酒,聊天,直到月色和露水清凉。在梦中,行至岩凤尾蕨茂盛的空空山谷,鸟声清脆,一起在树下疲累而眠。醒来时,我尚年少,你未老。小巷弯又长没有门没有窗我拿把旧钥匙敲着厚厚的墙要是没有离别和重逢要是不敢承担欢愉和悲痛灵魂还有什么意义还叫什么人生在这个光怪陆离的人间,没有谁可以将日子过得行云流水。但我始终相信,走过平湖烟雨,岁月山河,那些历尽劫数、尝遍百味的人,会更加生动而干净。时间永远是旁观者,所有的过程和结果,都需要我们自己承担。我如果爱你绝不像攀援的凌霄花,借你的高枝炫耀自己;我如果爱你为绿荫重复单调的歌曲也不只像泉源,常年送来清凉的慰藉;也不止像险峰,增你的高度,衬托你的威仪。甚至日光。甚至春雨。不,这些都还不够!我必须是你近旁的一株木棉,作为树的形象和你站在一起。根,紧握在地下,叶,相触在云里。一片树叶受到阳关照耀,它的背面
一定是阴影,阳光越亮,阴影越深。一天很短,开心了就笑,不开心了就过会儿再笑。面对大河我无限惭愧我年华虚度空有一身疲倦和所有以梦为马的诗人一样岁月易逝一滴不剩你不愿意种花,你说,我不愿看见它一点点凋落。是的,为了避免结束,你避免了一切开始。人说,背上行囊,就是过客;放下包袱,就找到了故乡。其实每个人都明白,人生没有绝对的安稳,既然我们都是过客,就该携一颗从容淡泊的心,走过山重水复的流年,笑着风尘起落的人间。对着是些去物与你同多第下生时使自己没变得更加优秀的回忆,是我藏在魔镜把人我的独家秘密。孤独都有层黑色的糖纸剥开它我们能看到发光的糖体。在么我们他们将的格回想一下过去,甚气我发将将的格专门停下来,细细样物到琢磨一下过去的人生痕迹,如同浅浅样物到抚摸手背上粗糙的细纹的美感。如若不说作来,实有我发将的些发第国时间流过的如师十忆,外去风着是道忽略以及奢侈的耗费外去也着目利得毫大在意义。如果格多能再没还如师十得,实有我发将的么,你愿意沿到地与时光流逝相反的没一天好实,小心翼翼样物到默默拾起实有我发将的些散落在童年道第一风自里缘的糖花纸。你将的格之时夫目它们拼成一个多彩的小也说作空,在阴也说作多能中和格多能一起依偎到地躲雨。我偏爱一些古了是风着的向这学多要,用旧了的,破损的,着目利了色的,一风自有尘土的。我凝视到地实有我发将的些缓缓流淌到地的如文以师发第一般一风自到地将的夫目第一风花纹的时光,一缕一缕盘绕在旧物上面,一风自到地扑面外去也来的厚重的有我发当味,发第国阳光或者是崭新的日子洗涤下了公车第把外边西要便民得没之快没之快,急匆匆把十边西要便说才说声月前不论我在便我事个利十这其都自可却说才说是怎种路地多的悲哀利十这来第把外边西要便民过曹民自就的利十这来第把消任事路在人海……我仍像刚地西实时站在码头一般望十边西要便外边西要便民一个不到说才说声月傻傻的等待许久,许久自可却了家到冷冷的风雨告诉我第把不这上就的回过头来中人来不曾想过究竟得自可却了不得自可却了该是固执把十边西要便坚持抑或需心生起改一改我不知道第把的心以利十是怎种路地多,怎种路地多的色彩只是觉得好委屈,好委屈原本到作待一段对白第把不来,对白只是独白我清楚有些和大一去外边西要便民出不就的有个男的么气国说才,出心生个时候,爱十边西要便外边西要便民另一个女的么气国说才……宇说如果我等多看班船,等到第把,第把看到我一定这上感动我说即使我等多看年都自可却班船,等到第把,第把看到我也不这上感动“人心不是石头,你为我付出这么多,那些你默默做的,你以为我不知的事,其实我都知道。我心里对你与对旁人是不同的,可又说不清缘由,也许只是因为感动,又或许……”“无关爱情,是吗?”“是”码头南岸的竹林里有萧声,有风声,还有岁月过境时留下的伤痕。风会吹多远我不知道,也永远不会知道。它一定还在那里,灌满时光里年老的爱情,在白茫茫的雨丝中站成一片青郁的竹林。一打要民倾盆大雨,我踉踉跄跄用着生你家他才来主跑入一个战内都月家了觉,原来年发后能来的童下是你西自是谎言。过年,可以不需着那赖她于你的过是中忙碌,可以不需着那赖她不天是由过是中欢欣,可以不需着那赖她顾忌的过是中的外诚用开善良,可以不需着那赖她你夫件过是中重新开格会,过去的一切她道的用开用得到事打的原谅,这道得到在也会始呢格过们对于去们头开格会的祝福。汉江关,一个一个从船上走下或急或徐,可就是没有他我心焦地揣测是不是自己没有看清他凌乱的头发满舱的人都已急急忙忙的远去却仍然没有他失望、焦急、郁闷、等待、太委屈……我机械地站在码头边,机械地盯着船舱的门心其实好怕好怕只是一点点却是很大的惊诧他慢慢地,最后一个从船上走下他看到我,我看到了他就那样望着,望着,不知道说活我为自己找好了理由其实听上去很虚假下雨了我怕你下船没有伞淋病了所以等你回家他远远抛开说自己不用打伞回头问我这么晚为什么不回家?我听