分数的意义和性质主要内容:分数的产生分数的意义分数与意义:把单位1平均分成几份,表示其中的一份或几份分数与除法:分子(被除数),分母(除数),分数值(商)真分数真分数小于1真分数与假分数假分数假分数大于1或等于1.带分数(整数部分和真分数)假分数化带分数(分子除以分母,商作整数部分余数作分子分母不变)分数的基本性质:分数的分子、分母同时扩大或缩小相同的倍数,分数的大小不变。通分:分母不同化成分母相同,大小不变的分数最大公因数约分求最大公因数最简分数分子分母互质的分数(最简真分数、最简假分数)约分及其方法最小公倍数通分求最小公倍数分数比大小(通分、通分子、化成小数)通分及其方法小数化分数小数化成分母是10、100、1000的分数再化简分数和小数的互化分数化小数分子除以分母,除不尽的取近似值最简分数的分母只含有质因数2和5,这个分数一定能化成有限小数。知识点:分数的意义1、把一条线段平均分成5份,1份是它的()/();4份是它的()/();2、把一块饼平均分成2份,每份是它的()/();把一个正方形平均分成4份.1份是它的()/();3份是它的()/();知识点:分数与除法的关系:被除数÷除数=被除数/除数分数化简包括两步:一是约分;二是把假分数化成整数或带分数。=0.5=0.25=0.75=0.2=0.4=0.6=0.8
=0.125=0.375=0.625=0.875=0.05=0.04。知识点:分数的基本性质知识点:约分例题:把下面的分数约分2810156981014211830701056688练习:1、把下面的分数约分成最简分数。2、填空(1)约分的依据是(),约分的结果通常要得到()分数。(2)在、、、、、中,()是最简真分数。(3)分母是8的最简真分数有(),分子是6的最简假分数有()。()。3、把下列分数化成最简分数。知识点:通分分数的加法和减法主要内容:同分母分数加、减法(分母不变,分子相加减)分数数的加法和减法异分母分数加、减法(通分后再加减)分数加减混合运算带分数加减法:带分数相加减,整数部分和分数部分分别相加减,再把所得的结果合并起来。知识点:分数的加减法例题:计算下列各题练习:1、计算下列各题。(能简算的尽量简算)1--+-++
知识点:积和一个因数的大小关系规律:一个数(0除外)乘大于1的数,积比原来的数大;一个数(0除外)乘小于1的数,积比原来的数小。因数和倍数相关概念1、整除:被除数、除数和商都是自然数,并且没有余数。大数能被小数整除时,大数是小数的倍数,小数是大数的因数。找因数的方法:一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的倍数的个数是无限的,最小的倍数是它本身。2、自然数按能不能被2整除来分:奇数偶数奇数:不能被2整除的数偶数:能被2整除的数。最小的奇数是1,最小的偶数是0.个位上是0,2,4,6,8的数都是2的倍数。个位上是0或5的数,是5的倍数。一个数各位上的数的和是3的倍数,这个数就是3的倍数。能同时被2、3、5整除的最大的两位数是90,最小的三位数是120。4、分解质因数用短除法分解质因数(一个合数写成几个质数相乘的形式)5、公因数、最大公因数几个数公有的因数叫这些数的公因数。其中最大的那个就叫它们的最大公因数。用短除法求两个数或三个数的最大公因数(除到互质为止,把所有的除数连乘起来)几个数的公因数只有1,就说这几个数互质。两数互质的特殊情况:
⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;如果两数是倍数关系时,那么较小的数就是它们的最大公因数。如果两数互质时,那么1就是它们的最大公因数。6、公倍数、最小公倍数几个数公有的倍数叫这些数的公倍数。其中最小的那个就叫它们的最小公倍数。用短除法求两个数的最小公倍数(除到互质为止,把所有的除数和商连乘起来)用短除法求三个数的最小公倍数(除到两两互质为止,把所有的除数和商连乘起来)如果两数是倍数关系时,那么较大的数就是它们的最小公倍数。如果两数互质时,那么它们的积就是它们的最小公倍数。知识点:倍数与因数之间的关系是相互的,不能单独存在。一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。例如:7的倍数()。确定一个数的倍数,同样依据乘法口诀,如:1×7=7、2×7=14、3×7=21、4×7=28、5×7=35……还有很多。因此7的倍数有:7、14、21、28、35、42……一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。知识点3:关于倍数因数的一些概念性问题一个数的因数个数是有限的,最小的因数是1,最大的因数是他本身。一个数的倍数个数是无限的,最小的倍数是他本身,没有最大的倍数。1是任一自然数(0除外)的因数。也是任一自然数(0除外)的最小因数。一个数的因数最少有1个,这个数是1。除1以外的任何整数至少有两个因数(0除外)。一个数的因数都小于等于他本身,一个数的倍数都大于等于他本身。一个数的最小倍数=一个数的最大因数=这个数练习:(1)一个数的倍数个数是(),最小的倍数是(),()最大的倍数。
(1)一个数的因数的个数是(),最小的因数是(),最大的因数是()。(2)在研究因数和倍数时,我们所说的数一般指的是()。(3)判断并改正:一个数的因数都比他的倍数小。()1是所有的自然数的因数。()一个数的因数一定小于他本身。()一个数的倍数一定比他的因数大。()任何一个数的倍数个数一定比因数个数多。()知识点1:2、3、5的倍数特征个位上是0,2,4,6,8的数都是2的倍数。例如:202、480、304,都能被2整除。个位上是0或5的数,是5的倍数。例如:5、30、405都能被5整除。一个数各个数位上的数的和是3的倍数,这个数就是3的倍数。例如:12、108、204都能被3整除。个位上是0的数既是2的倍数又是5的倍数。例如:80、20、70、130等。个位上是0且各位数字的和是3的倍数,那么这个数既是2的倍数又是3和5的倍数。例如:120、90、180、270等。自然数按能否被2整除的特征可分为奇数和偶数。也就是说是2的倍数的数也叫做偶数(0也是偶数),不是2的倍数的数也叫做奇数。(因此在自然数中,除了奇数就是偶数)偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数奇数-奇数=偶数无论多少个偶数相加都是偶数偶数个奇数相加是偶数奇数个奇数相加是奇数知识点3:最大公因数与最小公倍数由于一个数的因数个数是有限的而且最大的因数是这个数本身,最小的因数都是1.因此,几个数公共的因数也只考虑其最大的公共因数,而不考虑最小的公共因数。例如:12、16、18的最大公因数
公共得因数有:1、212的因数有:1、2、3、4、6、1216的因数有:1、2、4、8、1618的因数有:1、2、3、6、9、18因此12、16、18的最大的公共因数即最大公因数是:2分数乘法知识点:分数乘法(一)分数乘法的意义:1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。例如:×5表示求5个的和是多少?2、分数乘分数是求一个数的几分之几是多少。例如:×表示求的是多少?(二)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(四)、分数混合运算的运算顺序和整数的运算顺序相同。(五)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律:a×b=b×a乘法结合律:(a×b)×c=a×(b×c)乘法分配律:(a+b)×c=ac+bcac+bc=(a+b)×c例题:1、×7表示(),还可以表示()。2、++=()×()=()++=()×()=()3、计算。×6×8×
4、计算。××××练习:1、计算12×42××11×15××22×××知识点:分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、画线段图:(1)两个量的关系:画两条线段图;(2)部分和整体的关系:画一条线段图。2、找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面3、求一个数的几倍:一个数×几倍;求一个数的几分之几是多少:一个数×。4、写数量关系式技巧:(1)“的”相当于“×”“占”、“是”、“比”相当于“=”(2)分率前是“的”:单位“1”的量×分率=分率对应量(3)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量例题:1.5的是多少?2.一瓶果汁重千克,20瓶果汁重多少千克?3.一只水箱可以容水500千克,箱水重多少千克?
4.修路队修路,上午修了千米,下午修的是上午的,这一天共修多少千米?练习:1、小明第一天看了一本书的,第二天看的相当于第一天的,小明两天有没有看完这本书?为什么?2、一辆卡车每千米耗油升,照这样计算,行千米耗油多少升?行10千米耗油多少升?3、一本书36页,第一天看了,第二天应从第几页看起?4、一条路100米,第一天修了这条路的,第二天修了余下的,还剩这条路的几分之几没有修?5、甲、乙两站相距720千米,一列火车从甲站开往乙站,已经行了全程的,这时火车超过两站中点多少千米?