分数乘法知识要点 一、分数乘法的意义 1、分数乘整数与整数乘法的意义相同。都是求几个相同加数的和的简便运算。 2、分数乘分数是求一个数的几分之几是多少。 二、分数乘法的计算法则 1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。 3、为了计算简便,能约分的要先约分,再计算。 注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。 4、分数连乘的计算方法:先约分,就是把所有的分子中可与分母相约的数先约分,再用分子乘分子作积的分子,分母乘分母作积的分母。三、规律:(乘法中比较大小时) 1、一个数(0除外)乘大于1的数,积大于这个数。 2、一个数(0除外)乘小于1的数(0除外),积小于这个数。 3、一个数(0除外)乘1,积等于这个数。 四、分数混合运算的运算顺序和整数的运算顺序相同。 先乘除,后加减, 同级运算从左到右运算, 如果有括号要先算括号 五、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。 乘法交换律:a×b=b×a 乘法结合律:(a×b)×c=a×(b×c) 乘法分配律:(a+b)×c=ac+b
c 三、经验之谈: 在进行分数乘法计算时,拿到题时不要急着动手,我们先观察一下,尽量把能约分的先约分,如果不确定的题先打打草稿,这样子做题准确度和效率都会得到提高。另外提醒一点,解答数学题,希望同学们养成打草稿的习惯,在初中数学中,太多比较复杂的计算题凭在脑子转来转去是转不出答案的。分数除法知识要点 1、分数除法的意义 乘法:因数×因数=积;除法:积÷一个因数=另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则 除以一个不为0的数,等于乘这个数的倒数。 注:0不能做除数。 3、规律(分数除法比较大小时) (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商等于被除数。 4、“[]”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。多层括号,从最里层开始计算。 5、分数除法应用题例1:把6米长的钢管平均截成9段,每段占全长的几分之几?3段占全长的几分之几?每段长多少米?分析:(1)把钢管的长度看成单位1,用单位1除以平均分的段数就是每段占全长的几分之几;(2)用每段占全长的几分之几乘3就是3段占全长的几分之几;(3)每段的长度就用总长度除以平均分的段数。解:(1)1÷9=1/9(2)1/9×3=1/3(3)6÷9=2/3答:……2:小明15分钟走1千米路,小新16分钟走1千米路.他们在1分钟内各走了多少千米路?分析:小明15分钟走1千米路,小新16分钟走1千米路.他们在1分钟内各走了多少千米路?解:小明1÷15=1/15(千米)小新1÷16=1/16(千米)答:……… 三、经验之谈: 除法是乘法的逆运算,在应用题中很多时候知道“积”,我们只需求出另一个因数就OK.部分计算题需要拐两个弯,其实不难,只要我们保留细心计算到底就能解决。