倒数的认识儋州市新州实验小学吴贵清教材与学情分析:本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法的后继内容,同时又是学习分数除法的先备条件,是属于承先启后的知识范例。主要包括两部分的内容:一是倒数的意义,二是求一个数的倒数的方法。内容看似简朴,但对学生来说比较抽象、难理解。所以,要让学生从实例出发,经历探究、概括的过程,来完成本节课的学习。部分学生在课前预习学习中已经接触了一些关于倒数的知识,但是对于倒数的概念的建立非常不系统、不牢固,认为倒数就是分数的分子、分母颠倒位置,将倒数的意义和求一个数的倒数的方法混为一谈。学生对倒数的认识局限于一个数,或者是把两个数倒过来。而大多数学生还没有接触过倒数知识。教学内容:九年义务教育人教版小学数学六年级上册第27页至第28页。教学目标:1、使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。2、让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。3、感受数学的趣味性和挑战性,提高学好数学的信心。教学重、难点:理解倒数的含义、掌握求倒数的方法。课时:一课时课型:新授课教学过程:-、激情导入1、“组字”游戏(1)出示:“口”和“木”“一”和“十”“口”和“天”(2)要求:请根据给出的两个不同的简单汉字,组成新的汉字。2、导入新课师:在中华汉字文化中,像这样把两个不同的简单汉字,组成新的汉字,这种现象是不是很有趣,很奇妙?这种奇妙,有趣的现象不仅出现在汉字中,也存在数学中。(1)出示:“3”和“8”“7”和“12”“5”和“1”“1”和“12”(2)要求:请根据给出的两个数字,组成不同的分数。3、揭示课题师:在数学中,像这种奇妙有趣的现象,就是我们今天所要一起探索的新知识------倒数的认识(板书课题:倒数的认识)二、教学新知
1、倒数的含义(1)、计算:3/8×8/37/15×15/75×1/51/12×12(2)观察:①每组中的两个数相乘的积是1②每组中的两个数的分子、分母的位置互相颠倒。③每组中的两个数有相互依存的关系。(3)归纳:乘积是1的两个数互为倒数。如3/8和8/3互为倒数,就是指:3/8的倒数是8/3,8/3的倒数是3/8.(4)想一想:问:互为倒数的两个数有什么特点?①两个数相乘的积是1②两个数的分子、分母的位置互相颠倒。③两个数必须相互依存、缺一不可。(5)巩固判断对错,并说说为什么①5/8×8/5=1,所以5/8和8/5互为倒数。②7/12×12/7=1,所以7/12是倒数。③1/2×4/3×3/2=1,所以1/2,4/3,3/2互为倒数。2、求倒数的方法(1)出示:下面哪两个数互为倒数?3/567/25/31/612/70你是怎样找一个数的倒数的?①学生自我尝试,独立解决。②归纳方法问:你是怎样求一个数的倒数的?学生汇报并总结求倒数的方法。(板书:分子、分母调换位置)追问:如果要求0.5的倒数,该怎么办?(板书:如果不是分数,可以先把它化成分数,再求它的倒数。3、特殊数:0和1讨论:0和1有倒数吗?(板书:0没有倒数,1的倒数是它本身。)三、巩固练习1、课本第28页的“做一做”2、课本练习六的相关习题。四、总结延伸1、延伸出示:7÷2/3()7×3/2师:猜一猜,中间括号里能填等号吗?那究竟是为什么呢?你可以自学课本,继续研究。
2、总结师:今天你收获了什么?五、板书设计倒数的认识乘积是1的两个数互为倒数。0没有倒数,1的倒数是它本身。求倒数的方法:①如果是分数,分子、分母调换位置。②如果不是分数,可以先把它化成分数,再求它的倒数。