小学数学人教版六年级上册 5.1圆的认识 课件
加入VIP免费下载

小学数学人教版六年级上册 5.1圆的认识 课件

ID:1200378

大小:3.85 MB

页数:72页

时间:2022-07-26

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
27.1圆的认识 圆是生活中常见的图形,许多物体都给我们以圆的形象.一感知圆的世界 观察画圆的过程,你能由此说出圆的形成过程吗?观察二圆的形成 如图,在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.·rOA固定的端点O叫做圆心线段OA叫做半径以点O为圆心的圆,记作“⊙O”,读作“圆O”.我国古人很早对圆就有这样的认识了,战国时的《墨经》就有“圆,一中同长也”的记载.它的意思是圆上各点到圆心的距离都等于半径.三、圆的概念 (1)圆上各点到定点(圆心O)的距离都等于定长(半径r);归纳:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点的集合.从画圆的过程可以看出:(2)到定点的距离等于定长的点都在同一个圆上. 圆的两种定义动态:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A所形成的图形叫做圆.静态:圆心为O、半径为r的圆可以看成是所有到定点O的距离等于定长r的点组成的图形. 把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.为什么车轮是圆的?祥子 经过圆心的弦(如图中的AB)叫做直径.·COAB连接圆上任意两点的线段(如图AC)叫做弦,与圆有关的概念弦 议一议小明和小强为了探究O中有没有最长的弦,经过了大量的测量,最后得出一致结论,直径是圆中最长的弦,你认为他们的结论对吗?试说说你的理由.⊙ 弧圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”AB”或“弧AB”.⌒AB圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆.·ABCO ·COAB劣弧与优弧小于半圆的弧(如图中的  )叫做劣弧;⌒AC大于半圆的弧(用三个字母表示,如图中的)叫做优弧.ABC⌒ 等圆与等弧能够重合的两个圆是等圆。容易看出:半径相等的两个圆是等圆;反过来,同圆或等圆的半径相等。在同圆或等圆中,能够互相重合的弧叫做等弧。 圆的世界 车轮为什么做成圆形?探求新知 把车轮做成圆形,车轮上各点到车轮中心(圆心)的距离都等于车轮的半径,当车轮在平面上滚动时,车轮中心与平面的距离保持不变,因此,当车辆在平坦的路上行驶时,坐车的人会感觉到非常平稳,这也是车轮都做成圆形的数学道理.27.1圆的认识(2) 50%20%30%OACB半径有:OA、OB、OC直径:AB回顾思考 动手画一画 ●要确定一个圆,必须确定圆的____和____圆心半径圆心确定圆的位置,半径确定圆的大小.O这个以点O为圆心的圆叫作“圆O”,记为“⊙O”.圆的确定 圆的分类圆心相同的两个圆叫做同心圆圆心不同半径相等的两个圆叫做等圆 ●OBCA如图,弦有AB、BC、AC在圆中有长度不同的弦直径是圆中最长的弦弦 A曲线BC、BAC都是⊙O的弧分别记作:⌒BAC⌒BC、⌒AB⌒BC劣弧有:半圆有:⌒ABC⌒BAC判断:半圆是弧,但弧不一定是半圆.()⌒BAC⌒BC、有什么区别?⌒ACB优弧有:弧●OBCA一个比半圆大一个比半圆小!小于半圆的弧叫做优弧,大于的弧叫做劣弧 圆心角定义:顶点在圆心,并且两边都和圆周相交的角叫做圆周角AOBC找出⊙O中的圆心角:∠AOC  ∠BOC思考:∠ABC是不是圆心角? 判断正误:1、圆中的直径是弦;2、弦是圆中的直径;3、直径是圆中最长的弦;4、直径的中点是圆心;5、半径和弦都是线段;6、直径相等的两个圆是等圆;7、弦是圆上两点间的部分;8、等于半径两倍的线段是直径。9、若P是⊙O内一点,过P点的最长的弦有无数条。10、半圆是弧,但弧不一定是半圆.√×√√√√×××× ●CBADO思考:在⊙O中,AB、CD是直径.AD与BC平行吗?说说你的理由.四边形ACBD是矩形么?为什么?思考温馨提示:1、对角线相等且互相平分的四边形是矩形。2、由内错角的相等也可以得到线的平行变式:在矩形ACBD中,对角线AB、CD相交于点O,试说明A、B、C、D4个点在同一个圆上ABDCO 思考某部队在灯塔A的周围进行爆破作业,A的周围3km内的水域为危险区域,有一渔船误入离A点2km的B处,为了尽快驶离危险区域,该般应沿什么方向航行?提示:1、理解题意,画出图形;AB2、结合图形,分析题意。你能用数学知识来解释原因吗?CD 活动&探索CBOAFEDM问:(1)FC是弦吗?为什么?(2)∠CMB,∠CMA是不是圆心角?弦有:AB,CD圆心角有:∠DOE,∠COE 你收获了什么??怎么确定圆圆的分类弦弧圆心角 1.如何在操场上画一个半径是5m的圆?说出你的理由练习首先确定圆心,然后用5米长的绳子一端固定为圆心端,另一端系在一端尖木棒,木棒以5米长尖端划动一周,所形成的图形就是所画的圆.根据圆的形成定义 (3)已知线段AB,试以线段AB为弦,在AB上方画弧,使得所画的弧分别是劣弧,优弧和半圆,并指出这三种不同情况时,圆心与线段的位置关系。2.(1)过平面上一点A画圆;(2)过平面上两点A,B画圆;探索思考 运用新知:3.练一练:⑴读出图中所有的弦;⑵写出图中所有的弧;⑶弦AC所对的弧是_______;●BCAO 想一想4.判断下列说法的正误:(1)弦是直径;(2)半圆是弧;(3)过圆心的线段是直径;(7)圆心相同,半径相等的两个圆是同心圆;(8)半径相等的两个圆是等圆.(4)过圆心的直线是直径;(5)半圆是最长的弧;(6)直径是最长的弦;()()()()()()()() ●CBADO5.思考:在⊙O中,AB、CD是直径.AD与BC平行吗?说说你的理由.四边形ACBD是矩形么?为什么?温馨提示:对角线相等且互相平分的四边形是矩形。 6.如图,已知AB为⊙O的直径,AC为弦,OD∥BC交AC于D,BC=6厘米,求OD的长。●BAocD 谢谢合作! 课题:27.1.2圆的轴对称性 ?复习提问:1、什么是轴对称图形?我们在前面学过哪些轴对称图形?如果一个图形沿一条直线对折,直线两旁的部分能够互相重合,那么这个图形叫轴对称图形。如线段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我们所学的圆是不是轴对称图形呢?圆是轴对称图形,经过圆心的每一条直线都是它们的对称轴. 看一看B.OCAEDO.CAEBDAE≠BEAE=BE 动动脑筋已知:在⊙O中,CD是直径,AB是弦,CD⊥AB,垂足为E。求证:AE=BE,AC=BC,AD=BD。⌒⌒⌒⌒C.OAEBD叠合法证明:连结OA、OB,则OA=OB。因为垂直于弦AB的直径CD所在的直线既是等腰三角形OAB的对称轴又是⊙O的对称轴。所以,当把圆沿着直径CD折叠时,CD两侧的两个半圆重合,A点和B点重合,AE和BE重合,AC、AD分别和BC、BD重合。因此AE=BE,AC=BC,AD=BD⌒⌒⌒⌒⌒⌒⌒⌒ 垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。题设结论(1)过圆心(直径)(2)垂直于弦}{(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧 讨论(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对优弧(5)平分弦所对的劣弧(3)(1)(2)(4)(5)(2)(3)(1)(4)(5)(1)(4)(3)(2)(5)(1)(5)(3)(4)(2)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 命题(1):平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧已知:CD是直径,AB是弦,并且CD平分AB求证:CD⊥AB,AD=BD,AC=BC⌒⌒⌒⌒命题(2):弦的垂直平分线经过圆心,并且平分弦所对的两条弧已知:AB是弦,CD平分AB,CD⊥AB,求证:CD是直径,AD=BD,AC=BC⌒⌒⌒⌒命题(3):平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧已知:CD是直径,AB是弦,并且AD=BD(AC=BC)求证:CD平分AB,AC=BC(AD=BD)CD⊥AB⌒⌒⌒⌒⌒⌒⌒⌒.OCAEBDC 推论(1)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对和的另一条弧 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧垂径定理记忆 判断(1)垂直于弦的直线平分弦,并且平分弦所对的弧…………………………………………..()(2)弦所对的两弧中点的连线,垂直于弦,并且经过圆心……………………………………..()(3)圆的不与直径垂直的弦必不被这条直径平分…………………………………………...()(4)平分弦的直径垂直于弦,并且平分弦所对的两条弧………………………………………()(5)圆内两条非直径的弦不能互相平分()×√××√ 例1如图,已知在⊙O中,弦AB的长为8厘米,圆心O到AB的距离为3厘米,求⊙O的半径。解:连结OA。过O作OE⊥AB,垂足为E,则OE=3厘米,AE=BE。∵AB=8厘米∴AE=4厘米在RtAOE中,根据勾股定理有OA=5厘米∴⊙O的半径为5厘米。.AEBO讲解 根据垂径定理与推论可知对于一个圆和一条直线来说。如果具备(1)过圆心(2)垂直于弦(3)平分弦(4)平分弦所对的优弧(5)平分弦所对的劣弧上述五个条件中的任何两个条件都可以推出其他三个结论注意 例2:平分弧AB画法:连结AB;画AB的中垂线,交弧AB于点E。点E就是所求的分点。ABECD 例3已知:如图,在以O为圆心的两个同心圆中,大圆的弦AB交小圆于C,D两点。求证:AC=BD。证明:过O作OE⊥AB,垂足为E,则AE=BE,CE=DE。AE-CE=BE-DE。所以,AC=BDE.ACDBO讲解 例4已知:⊙O中弦AB∥CD。求证:AC=BD⌒⌒证明:作直径MN⊥AB。∵AB∥CD,∴MN⊥CD。则AM=BM,CM=DM(垂直平分弦的直径平分弦所对的弦)AM-CM=BM-DM∴AC=BD⌒⌒⌒⌒⌒⌒⌒⌒⌒⌒.MCDABON讲解 推论(1)(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧推论(2)圆的两条平行弦所夹的弧相等 E小结:解决有关弦的问题,经常是过圆心作弦的垂线,或作垂直于弦的直径,连结半径等辅助线,为应用垂径定理创造条件。.CDABOMNE.ACDBO.ABO 学生练习已知:AB是⊙O直径,CD是弦,AE⊥CD,BF⊥CD求证:EC=DF.AOBECDF 圆周角27.1圆的认识 一、回顾如下图,同学们能找到圆心角吗?它具有什么样的特征?顶点在圆心,两边与圆相交的角叫做圆心角。 究竟什么样的角是圆周角呢?像图(3)中的角就是圆周角,而图(1)、(2)、(4)、(5)中的角都不是圆周角。二、认识圆周角 如何判断一个角是不是圆周角?顶点在圆上,两边与圆相交的角叫做圆周角。练习:指出下图中的圆周角。思考:(1)(2)(3)(4)(5)(6)×√×××√ 如图,线段AB是⊙O的直径,点C是⊙O上任意一点(除点A、B),那么,∠ACB就是直径AB所对的圆周角.想想看,∠ACB会是怎么样的角?为什么呢?演示三、探索半圆或直径所对的圆周角的度数 ∴△AOC、△BOC都是等腰三角形∠OAC=∠OCA,∠OBC=∠OCB又∠OAC+∠OBC+∠ACB=180°∠ACB=∠OCA+∠OCB==90°因此,不管点C在⊙O上何处(除点A、B),∠ACB总等于90°证明:因为OA=OB=OC, 半圆或直径所对的圆周角都相等,都等于90°(直角)。反过来也是成立的,即90°的圆周角所对的弦是圆的直径。结论 三、探究同一条弧所对的圆周角和圆心角的关系1、分别量一量图23.1.10中弧AB所对的两个圆周角的度数比较一下.再变动点C在圆周上的位置,看看圆周角的度数有没有变化.你发现其中有什么规律吗?2、分别量出图23.1.10中弧AB所对的圆周角和圆心角的度数,比较一下,你发现什么?演示 为了验证这个猜想,如图所示,可将圆对折,使折痕经过圆心O和圆周角的顶点C,这时可能出现三种情况:(1)折痕是圆周角的一条边,(2)折痕在圆周角的内部,(3)折痕在圆周角的外部。 定理的证明(1)圆心在∠BAC的一边上.AOBC由于OA=OC因此∠C=∠BAC而∠BOC=∠BAC+∠C所以∠BAC=∠BOC12 OABC(2)圆心在∠BAC的内部.D作直径AD.由于∠BAD=∠BOD12∠DAC=∠DOC,12所以∠BAD+∠DAC=(∠BOD+∠DOC)12即∠BAC=∠BOC12 OABC(3)圆心在∠BAC的外部.D作直径AD.由于∠DAB=∠DOB12∠DAC=∠DOC,12所以∠DAC-∠DAB=(∠DOC-∠DOB)12即∠BAC=∠BOC12 结论:在同一个圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧或等弧所对的圆心角的一半;相等的圆周角所对的弧也相等。∠ACB=;∠ADB=;∠=∠.如图:则有ACBADB 例如图,AB为⊙O的直径,∠A=80°,求∠ABC的度数。ABO解:∵AB为⊙O的直径∴∠C=90°,又∠A=80°∴∠B=10° 课后练习1、试找出图中所有相等的圆周角。3、在圆中,一条弧所对的圆心角和圆周角分别为(2x+100)°和(5x-30)°,求这条弧所对的圆心角和圆周角的度数.2、右图是一个圆形的零件,你能告诉我,它的圆心的位置吗?你有什么简捷的办法? 练习一:2.如图,圆心角∠AOB=100°,则∠ACB=___。OABCBAO.70°x1.求圆中角X的度数。AO.X120°3、如图,在直径为AB的半圆中,O为圆心,C、D为半圆上的两点,∠COD=500,则∠CAD=_________35°120°130°25° (1)一个概念(圆周角)内容小结:(2)一个定理:一条弧所对的圆周角等于该弦所对的圆心角的一半;(3)二个推论:半圆或直径所对的圆周角是直角;90°的圆周角所对的弦是直径。同圆内,同弧或等弧所对的圆周角相等;相等的圆周角所对的弧相等。 练习二:如图,P是△ABC的外接圆上的一点∠APC=∠CPB=60°。求证:△ABC是等边三角形。··APBCO证明:∵∠ABC和∠APC都是⌒所对的圆周角。AC∴∠ABC=∠APC=60°(同弧所对的圆周角相等)同理,∵∠BAC和∠CPB都是⌒所对的圆周角,BC∴∠BAC=∠CPB=60°。∴△ABC等边三角形。 练习三已知:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D,交AC于E,求证:⌒ ⌒BD=DE证明:连结AD.∵AB是圆的直径,点D在圆上,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴AD平分顶角∠BAC,即∠BAD=∠CAD,∴⌒⌒BD=DE(同圆或等圆中,相等的圆周角所对弧相等)。ABCDE

10000+的老师在这里下载备课资料