1.1.2集合间的基本运算考纲解读:(三)集合的基本运算1.理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集。2.理解在给定集合中一个子集的补集的含义,会求给定子集的补集。3.能使用韦恩图(Venn)表达集合的关系及运算。【知识与方法】一.)交集1.一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与B的交集,数学符号表示为A∩B,表示意义为{x|x∈A,且x∈B}2.简单性质:①A∩∅=∅;②A∩A=A;③A∩B=B∩A;④A∩B=B=B⊆A二.)并集1.一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与B的并集,数学符号表示为A∪B,表示意义为{x|x∈A,或x∈B}2.简单性质:①A∪∅=A;②A∪A=A;③A∪B=B∪A;④A∪B=A=B⊆A三.)补集1.一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常写作U2.对于一个集合,有全集U中不属于集合A的所有元素组成的集合称为集合A相对于全集U的补集,记做CUA,即CUA={x|x∈U,且x∉A}3.常用公式:①A∪(CUA)=U;A∩(CUA)=∅。②(CUA)∩(CUB)=CU(A∪B);(CUA)∪(CUB)=CUA(A∩B)【温馨提示】1.分析集合关系时,弄清集合由哪些元素组成,这就需要我们把抽象的问题具体化、形象化,也就是善于对集合的三种语言(文字、符号、图形)进行相互转化,同时还要善于将多个参数表示的符号描述法{x|P(x)}的集合化到最简形式.此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时.因此分类讨论思想是必须的.2.求集合的并、交、补是集合间的基本运算,运算结果仍然还是集合,区分交集与并集的关键是“且”与“或”,在处理有关交集与并集的问题时,常常从这两个字眼出发去揭示、挖掘题设条件,结合Venn图或数轴,进而用集合语言表示,增强运用数形结合思想方法的意识.要善于运用数形结合、分类讨论、化归与转化等数学思想方法来解决集合的问题.要注意A⊆B、A∩B=A、A∪B=B、∁UA⊇∁UB、A∩(∁UB)=∅这五个关系式的等价性.【典型试题】1.已知全集U={1,2,3,4,5},且A={2,3,4},B={1,2},则A∩(∁UB)等于( )A.{2}B.{5}C.{3,4}D.{2,3,4,5}2.已知全集U={0,1,2},且∁UA={2},则A=( )A.{0}B.{1}C.∅D.{0,1}3.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=A∪B,则集合∁U(A∩B)中的元素共有( )A.3个B.4个C.5个D.6个4.已知集合U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则( )A.M∩N={4,6}B.M∪N=UC.(∁UN)∪M=UD.(∁UM)∩N=N5.已知集合U={1,3,5,7,9},A={1,5,7},则∁UA=( )A.{1,3} B.{3,7,9} C.{3,5,9}D.{3,9}6.集合A={x|-1≤x≤2},B={x|x<1},则A∩(∁RB)=( )A.{x|x>1}B.{x|x≥1}C.{x|1<x≤2}D.{x|1≤x≤2}7.已知全集U=Z,集合A={x|x2=x},B={-1,0,1,2},则图中的阴影部分所表示的集合等于( )A.{-1,2}B.{-1,0}C.{0,1}D.{1,2}8.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁UA={x|2≤x≤5},则a=________.9.已知全集U={1,2,3,4,5},集合A={x|x2-3x+2=0},B={x|x=2a,a∈A},则集合∁U(A∪
B)中元素个数为( )A.1B.2C.3D.410.已知全集U=A∪B中有m个元素,(∁UA)∪(∁UB)中有n个元素.若A∩B非空,则A∩B元素个数( )A.mnB.m+nC.n-mD.m-n11.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.12.设集合U={1,2,3,4,5},A={2,4},B={3,4,5},C={3,4},则(A∪B)∩(∁UC)=________.13.已知全集U={2,3,a2-a-1},A={2,3},若∁UA={1},则实数a的值是________.14.设集合A={x|x+m≥0},B={x|-2<x<4},全集U=R,且(∁UA)∩B=∅,实数m的取值范围________.15.50名学生做的物理、化学两种实验,已知物理实验做得正确得有40人,化学实验做得正确得有31人,两种实验都做错得有4人,则这两种实验都做对的有人.16.已知集合A={x|x2+ax+12b=0}和B={x|x2-ax+b=0},满足B∩(∁UA)={2},A∩(∁UB)={4},U=R,求实数a,b的值。17.已知集合A={x|2a-2