§1.1.3集合的基本运算(1)学习目标1.理解交集与并集的概念,掌握交集与并集的区别与联系;2.会求两个已知集合的交集和并集,并能正确应用它们解决一些简单问题;3.能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.学习过程一、课前准备(预习教材P8~P9,找出疑惑之处)复习1:用适当符号填空.0{0};0;{x|x+1=0,x∈R};{0}{x|x5};{x|x>-3}{x|x>2};{x|x>6}{x|x5}.复习2:已知A={1,2,3},S={1,2,3,4,5},则AS,{x|x∈S且xA}=.思考:实数有加法运算,类比实数的加法运算,集合是否也可以“相加”呢?二、新课导学※学习探究探究:设集合,.(1)试用Venn图表示集合A、B后,指出它们的公共部分(交)、合并部分(并);(2)讨论如何用文字语言、符号语言分别表示两个集合的交、并?新知:交集、并集.①一般地,由所有属于集合A且属于集合B的元素所组成的集合,叫作A、B的交集(intersectionset),记作A∩B,读“A交B”,即:ABVenn图如右表示.②类比说出并集的定义.由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集(unionset),记作:,读作:A并B,用描述法表示是:.ABA
Venn图如右表示.试试:(1)A={3,5,6,8},B={4,5,7,8},则A∪B=;(2)设A={等腰三角形},B={直角三角形},则A∩B=;(3)A={x|x>3},B={x|x