必一1.2.1函数的概念
加入VIP免费下载

必一1.2.1函数的概念

ID:1204967

大小:648.5 KB

页数:30页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.2.1函数的基本概念1 设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有惟一的值与它对应,则称x是自变量,y是x的函数;其中自变量x的取值的集合叫做函数的定义域,和自变量x的值对应的y的值叫做函数的值域。1、初中学习的函数概念是什么?2 2、请同学们考虑以下两个问题:显然,仅用初中函数的概念很难回答这些问题。因此,需要从新的高度认识函数。3 下面先看几个实例:(1)一枚炮弹发射后,经过26s落到地面击中目标,炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2(*)①t的变化范围是数集A={t|0≤t≤26};②h的变化范围是数集B={h|0≤h≤845};③对于A中的任意一个时间t,按照对应关系(*),在数集B中都有唯一的高度h和它对应;④构建了从A到B的一个对应f:AB4 (2)实例二:近几十年来,大气层中的臭氧层迅速减少,因而出现了臭氧层空洞问题,图1.2-1中的曲线显示了南极上空臭氧层空洞的面积从1979——2001年的变化情况.1997198119831987198919911993199719992001t/年252015105026时刻t的变化范围:A={t︱1979≤t≤2001}空洞面积S的变化范围:S={S︱0≤t≤26}5 (3)实例三:国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高,表1—1中恩格尔系数随时间变化的情况表明,“八五”计划以来,我国城镇居民的生活质量发生了显著的变化。表1—1“八五”计划以来,我国城镇居民恩格尔系数变化情况时间(年)19911992199319941995199619971998199920002001城镇居民恩格尔系数%53.852.950.149.449.948.646.444.541.939.237.9时刻t的变化范围:A={t︱1991≤t≤2001},城镇居民恩格尔系数的变化范围:S={S︱37.9≤t≤53.8}6 不同点共同点实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图象刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系;(1)都有两个非空数集(2)两个数集之间都有一种确定的对应关系7 设A、B是非空数集,如果按照某种对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作:y=f(x),x∈A你能由此概括出函数的一般概念吗?8 ①x叫做自变量,②x的取值范围集合A叫做函数的定义域(domain);③与x的值相对应的y的值叫做函数值,④函数值集合{f(x)|x∈A}叫做函数的值域(range)。设A、B是非空数集,如果按照某种对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function),记作:y=f(x),x∈A9 回顾已学函数初中各类函数的对应法则、定义域、值域分别是什么?10 函数对应法则定义域值域正比例函数反比例函数一次函数二次函数RRRRR11 (1)试说明函数定义中有几个要素?定义域、值域、对应法则①定义域、值域、对应关系是决定函数的三要素,是一个整体;②值域由定义域、对应法则惟一确定;③函数符号y=f(x)表示“y是x的函数”而不是表示“y等于f与x的乘积。12 判断正误1、函数值域中的每一个数都有定义域中的一个数与之对应2、函数的定义域和值域一定是无限集合3、定义域和对应关系确定后,函数值域也就确定4、若函数的定义域只有一个元素,则值域也只有一个元素5、对于不同的x,y的值也不同6、f(a)表示当x=a时,函数f(x)的值,是一个常量√√√√××练习113 (2)如何判断给定的两个变量之间是否具有函数关系?①定义域和对应法则是否给出?②根据所给对应法则,自变量x在其定义域中的每一个值,是否都有惟一确定的一个函数值y和它对应。14 1.判断下列对应能否表示y是x的函数(1)y=|x|(2)|y|=x(3)y=x2(4)y2=x(5)y2+x2=1(6)y2-x2=1练习215 2.判断下列图象能表示函数图象的是()xy0(A)xy0(B)xy0(D)xy0(C)D16 3.下图中可表示函数y=f(x)的图象有几个?OxyBOxyCOxyDOxyA17 4.判断下列关系式是否是函数?并说明理由。18 5.对于函数y=f(x),以下说法正确的有()①y是x的函数②对于不同的x,y的值也不同③f(a)表示当x=a时函数f(x)的值,是一个常量④f(x)一定可以用一个具体的式子表示出来A、1个B、2个C、3个D、4个B19 6.给出四个命题:①函数就是定义域到值域的对应②若函数的定义域只含有一个元素,则值域也只有一个元素③因f(x)=5(x∈R),这个函数值不随x的变化范围而变化,所以f(0)=5也成立④定义域和对应关系确定后,函数值也就确定了正确有()A、1个B、2个C、3个D、4个D20 7.判断下列函数f(x)与g(x)是否表示相等的函数,并说明理由?21 定义名称符号数轴表示{x|a≤x≤b}{x|a

10000+的老师在这里下载备课资料