1.2.1函数的概念
设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,则称x是自变量,y是x的函数。初中学习的函数的概念是什么?
为进一步学习函数及其构成要素,下面先看几个实例:(1)一枚炮弹发射后,经过26s落到地面击中目标,炮弹的射高为845m,且炮弹距地面的高度h(单位:m)随时间t(单位:s)变化的规律是h=130t-5t2(*)这里,炮弹飞行时间t的变化范围是数集A={t|0≤t≤26},炮弹距地面的高度h的变化范围是数集B={h|0≤h≤845}.从问题的实际意义可知,对于数集A中的任意一个时间t,按照对应关系(*),在数集B中都有唯一的高度h和它对应。1、函数的概念
(2)近几十年来,大气中的臭氧迅速减少,因而出现了臭氧层空洞问题。下图中的曲线显示了南极上空臭氧空洞的面积从1979~2001年的变化情况:根据下图中的曲线可知,时间t的变化范围是数集A={t|1979≤t≤2001},臭氧层空洞面积S的变化范围是数集B={S|0≤S≤26}.并且,对于数集A中的每一个时刻t,按照图中的曲线,在数集B中都有唯一确定的臭氧层空洞面积S和它对应.
(3)国际上常用恩格尔系数反映一个国家人民生活质量的高低,恩格尔系数越低,生活质量越高。下表中恩格尔系数随时间(年)变化的情况表明,“八五”计划以来我国城镇居民的生活质量发生了显著变化。请你仿照(1)(2)描述恩格尔系数和时间的关系
归纳以上三个实例,我们看到,三个实例中变量之间的关系可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都有唯一确定的y和它对应,记作f:A→B.设A、B是非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域。显然,值域是集合B的子集。例1下列说法中,不正确的是()A、函数值域中的每一个数都有定义域中的一个数与之对应B、函数的定义域和值域一定是无限集合C、定义域和对应关系确定后,函数值域也就确定D、若函数的定义域只有一个元素,则值域也只有一个元素B
例2对于函数y=f(x),以下说法正确的有()①y是x的函数②对于不同的x,y的值也不同③f(a)表示当x=a时函数f(x)的值,是一个常量④f(x)一定可以用一个具体的式子表示出来A、1个B、2个C、3个D、4个B例3给出四个结论:①函数就是定义域到值域的对应关系②若函数的定义域只含有一个元素,则值域也只有一个元素③因f(x)=5(x∈R),这个函数值不随x的变化范围而变化,所以f(0)=5也成立④定义域和对应关系确定后,函数值也就确定了正确有()A、1个B、2个C、3个D、4个D
设a,b是两个实数,而且a