高中数学必修一教案《函数的表示法》教案教学目标1、明确函数的三种表示方法,会根据不同实际情境选择合适的方法表示函数,树立应用数形结合的思想.2、通过具体实例,了解简单的分段函数,并能简单应用,提高应用函数解决实际问题的能力.3、了解映射的概念及表示方法,会利用映射的概念来判断某种“对应关系”是否是映射.4、通过本节内容的学习,能够加深对函数概念的理解,以及通过学习映射,提高对数学高度抽象性和广泛应用性的认识.教学重难点重点:函数的三种表示方法;分段函数的概念;映射的概念.难点:根据不同的需要选择恰当的方法表示函数,什么才算“恰当”?分段函数的表示及其图象;判断某种“对应关系”是否是映射.教学过程一、情景导入语言是沟通人与人之间的联系的,同样的祝福又有着不同的表示方法.例如,简体中文中的“生日快乐!”用繁体中文为:生日快樂!英文为:HappyBirthday!……那么对于函数,又有什么不同的表示方法呢?引出课题:函数的表示法.请同学们回忆一下我们初中接触过的函数的表示方法.二、提出问题初中学过的三种表示法:解析法、图象法和列表法各是怎样表示函数的?三、讨论结果1、解析法:用数学表达式表示两个变量之间的对应关系,如1.2.1的实例(1).2、图象法:以自变量x的取值为横坐标,对应的函数值y为纵坐标,在平面直角坐标系中描出各个点,这些点构成了函数的图象,这种用图象表示两个变量之间对应关系的方法叫做图象法,如1.2.1的实例(2).3、列表法:用表格来表示两个变量之间的对应关系的方法叫做列表法,如1.2.1的实例(3).四、例题讲解例3某种笔记本的单价是5元,买个笔记本需要y元,7
高中数学必修一教案试用函数的三种表示法表示函数.分析:注意本例的设问,此处“”有三种含义,它可以是解析表达式,可以是图象,也可以是表格.解:这个函数的定义域是数集{1,2,3,4,5}.用解析法可将函数表示为.用列表法可将函数表示为笔记本数x12345钱数y510152025用图象法可将函数表示为图1.2-2.图1.2-2思考:比较三种方法,它们各自的特点是什么?所有函数都能用解析法表示吗?点评:解析法的特点是:简明、全面地概括了变量间的关系;可以通过解析式求出任意一个自变量的值所对应的函数值,便于用解析式来研究函数的性质,还有利于我们求函数的值域;列表法的特点是:不需要计算就可以直接看出与自变量的值对应的函数值,列表法在实际生产和生活中也有广泛的应用,如银行利率表、列车时刻表等等;图象法的特点是:直观形象地表示自变量的变化,相应的函数值变化的趋势,有利于我们通过图象来研究函数的某些性质,图象法在生产和生活中有许多应用,如企业生产图,股市走势图等.但是并不是所有的函数都能用解析法表示,只有函数值随自变量的变化发生有规律的变化时,这样的函数才可能有解析式,否则写不出解析式,也就不能用解析法表示.注意:7
高中数学必修一教案(1)函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等;(2)解析法:必须注明函数的定义域;(3)列表法:选取的自变量要有代表性,应能反映定义域的特征;(4)图象法:是否连线.例4表1-2是某校高一(1)班三位同学在高一学年度六次数学测试的成绩及班级平均分表:表1-2第1次第2次第3次第4次第5次第6次王伟988791928895张城907688758680赵磊686573727582班级平均分88.278.385.480.375.782.6请你对这三位同学在高一学年度的数学学习情况做一个分析.分析:本例应引导学生分析题目要求,做学情分析,具体要分析什么?怎么分析?借助什么工具?解:从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位同学的成绩变化情况.如果将“成绩”与“测试序号”之间的关系用函数图像表示出来,如图1.2-3,那么就能比较直观地看到成绩变化的情况.这对我们的分析很有帮助.图1.2-3从图1.2-3我们看到,王伟同学的数学学习成绩始终高于班级平均水平,学习情况比较稳定而且成绩优秀.张城同学的数学成绩不稳定,总是在班级平均水平上下波动,而且波动幅度较大.赵磊同学的数学学习成绩低于班级平均水平,但他的成绩呈上升趋势,表明他的数学成绩稳步提高.思考:本例能否用解析法?为什么?点评:本题主要考查根据实际情境需要选择恰当的函数表示法的能力,7
高中数学必修一教案以及应用函数解决实际问题的能力.通过本题可见,图象法比列表法和解析法更能直观反映函数值的变化趋势.注意:本例为了研究学生的学习情况,将离散的点用虚线连接,这样更便于研究成绩的变化特点.例5画出函数的图象.解:由绝对值的概念,我们有所以,函数的图象如图1.2-4所示.图1.2-4例6某市“招手即停”公共汽车的票价按下列规则制定:(1)5公里以内(含5公里),票价2元;(2)5公里以上,每增加5公里,票价增加1元(不足5公里按5公里计算).如果某条线路的总里程为20公里,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.解:设票价为元,里程为公里,由题意可知,自变量的取值范围是.由“招手即停”公共汽车票价的制定规则,可得到以下函数解析式:根据这个函数解析式,可画出函数图像,如图1.2-5.7
高中数学必修一教案图1.2-5注意:(1)本例具有实际背景,所以解题时应考虑其实际意义;(2)分段函数的解析式不能写成几个不同的方程,而应写成函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.我们把例5、例6这样的函数称为分段函数.生活中,有很多可以用分段函数描述的实际问题,如出租车的计费,个人所得税纳税额等等.函数是“两个数集间的一种确定的对应关系”.当我们将数集扩展到任意的集合时,就
可以得到映射的概念.例如,欧洲的国家构成集合A,欧洲各国的首都构成集合B,对应关
系f:国家a对应于它的首都b.这样,对于集合A中的任意一个国家,按照对应关系f,在集合B中都有唯一确定的首都与之对应.我们将对应f:A→B称为映射.
一般地,我们有:设A,B是两个非空的集合.如果按某一个确定的对应关系f,使对于集合A中的任意一个元素,在集合B中都有唯一确定的元素与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射.在我们的生活中,有很多映射的例子.例如,设集合,
集合,对应关系f:电影票的号码对应于电影院的座位号,
那么对应f:A→B是一个映射.例7以下给出的对应是不是从集合A到B的映射?(1)集合A={P|P是数轴上的点},集合B=R,对应关系f:数轴上的点与它所代表的实数对应;7
高中数学必修一教案(2)集合A={P|P是平面直角坐标系中的点},集合,对应关系f:与它的坐标对应;(3)集合A={x|x是三角形},集合B={x|x是圆},对应关系f:每一个三角形都对应它的内切圆;(4)集合A={x|x是新华中学的班级},集合B={x|x是新华中学的学生},对应关系f:每一个班级都对应班里的学生.解:(1)按照建立数轴的方法可知,数轴上的任意一个点,都有唯一的实数与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(2)按照建立平面直角坐标系的方法可知,平面直角坐标系中的任意一个点,都有唯一的一个实数与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(3)由于每一个三角形只有一个内切圆与之对应,所以这个对应f:A→B是从集合A到B的一个映射.(4)新华中学的每一个班级里的学生都不止一个,即与一个班级对应的学生不止一个,所以这个对应f:A→B不是从集合A到B的一个映射.五、课堂小结本节教学设计容量较大,首先学习了函数的三种表示方法,要求在具体的实际问题中能够选用恰当的表示法来表示函数;然后学习了求分段函数解析式以及分段函数的画法;最后学习了映射的概念,要求能够判断某种“对应关系”是否是映射.六、巩固练习题1等腰三角形的周长是20,底边长是一腰长的函数,则().A.B.C.D.解:根据等腰三角形的周长列出函数解析式.因为,所以.因,所以.由构成三角形的条件(两边之和大于第三边)可知,得,所以函数的定义域为.所以.所以正确答案为D.题2某人驱车以52千米/时的速度从A地驶往260千米远处的B地,到达B地并停留1.5小时后,再以65千米/时的速度返回A地.试将此人驱车走过的路程s(千米)表示为时间t的函数.分析:本题中的函数是分段函数,要由时间t属于哪个时间段,得到相应的解析式.7
高中数学必修一教案解:从A地到B地,路上的时间为260/52=5(小时);从B地回到A地,路上的时间为260/65=4(小时).所以走过的路程s(千米)与时间t的函数关系式为:题3已知集合,,则下列对应不是从A到B的映射的是( ).解:A、B、D均满足映射定义,选项C不满足集合A中任一元素在集合B中有唯一元素与之对应,且集合A中元素b在集合B中无唯一元素与之对应.故选C.七、布置作业课后练习1、2、3、4.7