§22函数的单调性与最大(小)值(教师)
加入VIP免费下载

§22函数的单调性与最大(小)值(教师)

ID:1205547

大小:235.5 KB

页数:7页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.2函数的单调性与最大(小)值基础自测1.已知函数y=f(x)是定义在R上的增函数,则下列对f(x)=0的根说法不正确的是(填序号).①有且只有一个②有2个③至多有一个 ④没有根答案①②2.已知f(x)是R上的增函数,若令F(x)=f(1-x)-f(1+x),则F(x)是R上的函数(用“增”、“减”填空).答案减3.若函数f(x)=x2+(a2-4a+1)x+2在区间(-∞,1]上是减函数,则a的取值范围是.答案[1,3]4.(2009·徐州六县一区联考)若函数f(x)是定义在(0,+∞)上的增函数,且对一切x>0,y>0满足f(xy)=f(x)+f(y),则不等式f(x+6)+f(x)1).证明:函数f(x)在(-1,+∞)上为增函数.证明方法一任取x1,x2∈(-1,+∞),不妨设x10,>1且a>0,∴a又∵x1+1>0,x2+1>0,∴>0,于是f(x2)-f(x1)=a+>0,故函数f(x)在(-1,+∞)上为增函数.方法二f(x)=ax+1-(a>1),求导数得f′(x)=axlna+,∵a>1,∴当x>-1时,axlna>0,>0,f′(x)>0在(-1,+∞)上恒成立,则f(x)在(-1,+∞)上为增函数.方法三∵a>1,∴y=ax为增函数,又y=,在(-1,+∞)上也是增函数.∴y=ax+在(-1,+∞)上为增函数.例2判断函数f(x)=在定义域上的单调性.29 解函数的定义域为{x|x≤-1或x≥1},则f(x)=,可分解成两个简单函数.f(x)==x2-1的形式.当x≥1时,u(x)为增函数,为增函数.∴f(x)=在[1,+∞)上为增函数.当x≤-1时,u(x)为减函数,为减函数,∴f(x)=在(-∞,-1]上为减函数.例3求下列函数的最值与值域:(1)y=4-;(2)y=2x-;(3)y=x+;(4)y=.解(1)由3+2x-x2≥0得函数定义域为[-1,3],又t=3+2x-x2=4-(x-1)2.∴t∈[0,4],∈[0,2],从而,当x=1时,ymin=2,当x=-1或x=3时,ymax=4.故值域为[2,4].(2)方法一令=t(t≥0),则x=.∴y=1-t2-t=-(t+2+.∵二次函数对称轴为t=-,∴在[0,+∞)上y=-(t+2+是减函数,故ymax=-(0+2+=1.故函数有最大值1,无最小值,其值域为(-∞,1].方法二∵y=2x与y=-均为定义域上的增函数,∴y=2x-是定义域为{x|x≤}上的增函数,故ymax=2×=1,无最小值.故函数的值域为(-∞,1].(3)方法一函数y=x+是定义域为{x|x≠0}上的奇函数,故其图象关于原点对称,故只讨论x>0时,即可知x0时,y=x+≥2=4,等号当且仅当x=2时取得.当x

10000+的老师在这里下载备课资料