2.1.1(指数及指数幂的运算一)
加入VIP免费下载

2.1.1(指数及指数幂的运算一)

ID:1205919

大小:2.21 MB

页数:29页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.1.1指数与指数幂的运算(第一课时:根式) 问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系考古学家根据(*)式可以知道生物死亡t年后,体内的碳14含量P的值.(*)当生物死亡了5730年后,它体内的碳14含量P的值为当生物死亡了5730×2年后,它体内的碳14含量P的值为当生物死亡了6000年后,它体内的碳14含量P的值为当生物死亡了10000年后,它体内的碳14含量P的值为大家能指出右边各式的数学含义吗?正整数指数幂中将指数的取值范围从整数推广到实数 根式1.平方根若x2=a,则x叫做a的平方根(a≥0)2.立方根若x3=a,则x叫做a的立方根aa的平方根490-4-9aa的立方根-8-10827无无0±2±3-2-1023相信你们还没忘记!类比分析,可是个好方法哟!3.若x4=a,则x叫做a的次方根(a≥0)4.若x5=a,则x叫做a的次方根5.若xn=a,则x叫做a的n次方根四五 定义1:①当n为奇数时,a的n次方根只有1个,用表示②当n为偶数时,若a=0,则0的n次方根有1个,是0若a0,则a的n次方根有2个,.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若(1)27的立方根等于________(4)25的平方根等于________(2)-32的五次方根等于_____(5)16的四次方根等于_____(3)0的七次方根等于_____(6)-16的四次方根等于_______±53-2±2不存在0小试牛刀,相信你能成功 定义1:①当n为奇数时,a的n次方根只有1个,用表示②当n为偶数时,若a=0,则0的n次方根有1个,是0若a0,则a的n次方根有2个,.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若定义2:式子叫做根式,n叫做根指数,a叫做被开方数(当n是奇数)(当n是偶数,且a>0)即:根指数被开方数根式我的知识我来构建 那么:①一定成立吗?②一定成立吗?①;③;②;④;⑤;①;③;②;④;⑤;4916-1-8232-31试一试,有规律吗? 公式1:公式2:当n为奇数时,当n为偶数时,①;③;②;④;⑤;①;③;②;④;⑤;4916-1-8232-31 例1:求下列各式的值(2)(3)(4)练习:求下列各式的值: 例2.填空:(1)在这四个式子中,没有意义的是________.(2)若则a的取值范围是______.(3)已知a,b,c为三角形的三边,则 二、分数指数幂1.复习初中时的整数指数幂,运算性质 2.观察以下式子,并总结出规律:a>0小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式) 思考:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式?如: 为此,我们规定正数的分数指数幂的意义为:正数的负分数指数幂的意义与负整数幂的意义相同规定:0的正分数指数幂等于0,0的负分数指数幂无意义 由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即: 例1、求值例2、用分数指数幂的形式表示下列各式(其中a>0):例题3aaaaaa3223)3()2()1( 例3、计算下列各式(式中字母都是正数) 例4、计算下列各式 三、无理数指数幂 一般地,无理数指数幂(>0,是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.思考:请说明无理数指数幂的含义。 例3.计算解: 则有所以x的取值范围是 练习①计算②若③已知则x__a(填大于、小于或等于)④已知,求的值 知识点小结:1、两个定义2、两个公式:①当n为奇数时,当n为偶数时,②定义1:.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若定义2:式子叫做根式,n叫做根指数,a叫做被开方数 1.求下列各式的值:及时巩固,收获的东西才真正属于你们! 1、已知,求的值。ax=+-136322--+-xaxa2、计算下列各式)()2)(2(2222---¸+-aaaa2121212121212121)1(babababa-+++-补充练习 3、已知,求下列各式的值21212121)2()1(---+xxxx31=+-xx4、化简的结果是()C 5、2-(2k+1)-2-(2k-1)+2-2k等于()A.2-2kB.2-(2k-1)C.-2-(2k+1)D.26、有意义,则的取值范围是()x21)1|(|--x7、若10x=2,10y=3,则。=-2310yxC(-,1)(1,+) 8、,下列各式总能成立的是()RbaÎ,babababababababa+=+-=-+=+-=-10104444228822666)(D.C.)(B.).(A9、化简的结果())21)(21)(21)(21)(21(214181161321-----+++++)21(21D.121C.)21(B.)21(21A.32132113211321----------BA 哈哈,下课了!我的时间我做主!再见!

10000+的老师在这里下载备课资料