§2.1.1指数与指数幂的运算(第一课时:根式)
问题:当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半.根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系考古学家根据(*)式可以知道生物死亡t年后,体内的碳14含量P的值.(*)当生物死亡了5730年后,它体内的碳14含量P的值为当生物死亡了5730×2年后,它体内的碳14含量P的值为当生物死亡了6000年后,它体内的碳14含量P的值为当生物死亡了10000年后,它体内的碳14含量P的值为大家能指出右边各式的数学含义吗?正整数指数幂中将指数的取值范围从整数推广到实数
根式1.平方根若x2=a,则x叫做a的平方根(a≥0)2.立方根若x3=a,则x叫做a的立方根aa的平方根490-4-9aa的立方根-8-10827无无0±2±3-2-1023相信你们还没忘记!类比分析,可是个好方法哟!3.若x4=a,则x叫做a的次方根(a≥0)4.若x5=a,则x叫做a的次方根5.若xn=a,则x叫做a的n次方根四五
定义1:①当n为奇数时,a的n次方根只有1个,用表示②当n为偶数时,若a=0,则0的n次方根有1个,是0若a0,则a的n次方根有2个,.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若(1)-27的立方根等于________(4)25的平方根等于________(2)-32的五次方根等于_____(5)16的四次方根等于_____(3)0的七次方根等于_____(6)-16的四次方根等于_______±5-3-2±2不存在0小试牛刀,相信你能成功
定义1:①当n为奇数时,a的n次方根只有1个,用表示②当n为偶数时,若a=0,则0的n次方根有1个,是0若a0,则a的n次方根有2个,.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若定义2:式子叫做根式,n叫做根指数,a叫做被开方数(当n是奇数)(当n是偶数,且a>0)即:根指数被开方数根式我的知识我来构建
那么:①一定成立吗?②一定成立吗?①;③;②;④;⑤;①;③;②;④;⑤;4916-1-8232-31试一试,有规律吗?
公式1:公式2:当n为奇数时,当n为偶数时,①;③;②;④;⑤;①;③;②;④;⑤;4916-1-8232-31
例1:求下列各式的值(2)(3)(4)练习:求下列各式的值:
知识点小结:1、两个定义2、两个公式:①当n为奇数时,当n为偶数时,②定义1:.,1,,*NnnnaxaxnÎ>=且其中次方根的叫做那么若定义2:式子叫做根式,n叫做根指数,a叫做被开方数
1.求下列各式的值:及时巩固,收获的东西才真正属于你们!
哈哈,下课了!我的时间我做主!再见!