2022年高一数学 人教A版必修1 2.1.1指数与指数幂的运算 导学案
加入VIP免费下载

2022年高一数学 人教A版必修1 2.1.1指数与指数幂的运算 导学案

ID:1206044

大小:3.5 MB

页数:27页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.1.1指数与指数幂的运算(1)学习目标1.了解指数函数模型背景及实用性、必要性;2.了解根式的概念及表示方法;3.理解根式的运算性质.学习过程一、课前准备(预习教材P48~P50,找出疑惑之处)复习1:正方形面积公式为;正方体的体积公式为.复习2:(初中根式的概念)如果一个数的平方等于a,那么这个数叫做a的,记作;如果一个数的立方等于a,那么这个数叫做a的,记作.二、新课导学※学习探究探究任务一:指数函数模型应用背景探究下面实例及问题,了解指数指数概念提出的背景,体会引入指数函数的必要性.实例1.某市人口平均年增长率为1.25℅,1990年人口数为a万,则x年后人口数为多少万?实例2.给一张报纸,先实验最多可折多少次?你能超过8次吗?计算:若报纸长50cm,宽34cm,厚0.01mm,进行对折x次后,求对折后的面积与厚度?问题1:国务院发展研究中心在2000年分析,我国未来20年GDP(国内生产总值)年平均增长率达7.3℅,则x年后GDP为2000年的多少倍?问题2:生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t年后体内碳14的含量P与死亡时碳14关系为.探究该式意义?小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学.探究任务二:根式的概念及运算考察:,那么就叫4的;,那么3就叫27的;,那么就叫做的.依此类推,若,,那么叫做的.新知:一般地,若,那么叫做的次方根(throot),其中,.简记:.例如:,则.反思:当n为奇数时,n次方根情况如何?例如:,,记:.当n为偶数时,正数的n次方根情况?例如:的4次方根就是,记:.强调:负数没有偶次方根;0的任何次方根都是0,即.试试:,则的4次方根为;,则的3次方根为.新知:像的式子就叫做根式(radical),这里n叫做根指数(radicalexponent),a叫做被开方数(radicand).试试:计算、、.反思:从特殊到一般,、的意义及结果? 结论:.当是奇数时,;当是偶数时,.※典型例题例1求下类各式的值:(1);(2);(3);(4)().变式:计算或化简下列各式.(1);(2).推广:(a0).※动手试试练1.化简.练2.化简.三、总结提升※学习小结1.n次方根,根式的概念;2.根式运算性质.※知识拓展1.整数指数幂满足不等性质:若,则.2.正整数指数幂满足不等性质:①若,则;②若,则.其中N*.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.的值是().A.3B.-3C.3D.812.625的4次方根是().A.5B.-5C.±5D.253.化简是().A.B.C.D.4.化简=.5.计算:=;.课后作业1.计算:(1);(2).2.计算和,它们之间有什么关系?你能得到什么结论?3.对比与,你能把后者归入前者吗? §2.1.1指数与指数幂的运算(2)学习目标1.理解分数指数幂的概念;2.掌握根式与分数指数幂的互化;3.掌握有理数指数幂的运算.学习过程一、课前准备(预习教材P50~P53,找出疑惑之处)复习1:一般地,若,则叫做的,其中,.简记为:.像的式子就叫做,具有如下运算性质:=;=;=.复习2:整数指数幂的运算性质.(1);(2);(3).二、新课导学※学习探究探究任务:分数指数幂引例:a>0时,,则类似可得;,类似可得.新知:规定分数指数幂如下;.试试:(1)将下列根式写成分数指数幂形式:=;=;=.(2)求值:;;;.反思:①0的正分数指数幂为;0的负分数指数幂为.②分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:()·;;.※典型例题例1求值:;;;.变式:化为根式.例2用分数指数幂的形式表示下列各式:(1);(2);(3).例3计算(式中字母均正):(1);(2).小结:例2,运算性质的运用;例3,单项式运算.例4计算: (1);(2);(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.反思:①的结果?结论:无理指数幂.(结合教材P53利用逼近的思想理解无理指数幂意义)②无理数指数幂是一个确定的实数.实数指数幂的运算性质如何?※动手试试练1.把化成分数指数幂.练2.计算:(1);(2).三、总结提升※学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.※知识拓展放射性元素衰变的数学模型为:,其中t表示经过的时间,表示初始质量,衰减后的质量为m,为正的常数.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.若,且为整数,则下列各式中正确的是().A.B.C.D.2.化简的结果是().A.5B.15C.25D.1253.计算的结果是().A.B.C.D.4.化简=.5.若,则=.课后作业1.化简下列各式:(1);(2).2.计算:.§2.1.1指数与指数幂的运算(练习) 学习目标1.掌握n次方根的求解;2.会用分数指数幂表示根式;3.掌握根式与分数指数幂的运算.学习过程一、课前准备(复习教材P48~P53,找出疑惑之处)复习1:什么叫做根式?运算性质?像的式子就叫做,具有性质:=;=;=.复习2:分数指数幂如何定义?运算性质?①;.其中②;;.复习3:填空.①n为时,.②求下列各式的值:=;=;=;=;=;=;=.二、新课导学※典型例题例1已知=3,求下列各式的值:(1); (2); (3).补充:立方和差公式.小结:①平方法;②乘法公式;③根式的基本性质(a≥0)等.注意,a≥0十分重要,无此条件则公式不成立.例如,.变式:已知,求:(1);(2).例2从盛满1升纯酒精的容器中倒出升,然后用水填满,再倒出升,又用水填满,这样进行5次,则容器中剩下的纯酒精的升数为多少?变式:n次后?小结:①方法:摘要→审题;探究→结论;②解应用问题四步曲:审题→建模→解答→作答.※动手试试练1.化简:. 练2.已知x+x-1=3,求下列各式的值.(1);(2).练3.已知,试求的值.三、总结提升※学习小结1.根式与分数指数幂的运算;2.乘法公式的运用.※知识拓展1.立方和差公式:;.2.完全立方公式:;.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.的值为().A.B.C.3D.7292.(a>0)的值是().A.1B.aC.D.3.下列各式中成立的是().A.B.C.D.4.化简=.5.化简=.课后作业1.已知,求的值.2.探究:时,实数和整数所应满足的条件.§2.1.2指数函数及其性质(1) 学习目标1.了解指数函数模型的实际背景,认识数学与现实生活及其他学科的联系;2.理解指数函数的概念和意义;3.能画出具体指数函数的图象,掌握指数函数的性质(单调性、特殊点).学习过程一、课前准备(预习教材P54~P57,找出疑惑之处)复习1:零指数、负指数、分数指数幂怎样定义的?(1);(2);(3);.其中复习2:有理指数幂的运算性质.(1);(2);(3).二、新课导学※学习探究探究任务一:指数函数模型思想及指数函数概念实例:A.细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x次分裂得到y个细胞,那么细胞个数y与次数x的函数关系式是什么?B.一种放射性物质不断变化成其他物质,每经过一年的残留量是原来的84%,那么以时间x年为自变量,残留量y的函数关系式是什么?讨论:上面的两个函数有什么共同特征?底数是什么?指数是什么?新知:一般地,函数叫做指数函数(exponentialfunction),其中x是自变量,函数的定义域为R.反思:为什么规定>0且≠1呢?否则会出现什么情况呢?试试:举出几个生活中有关指数模型的例子?探究任务二:指数函数的图象和性质引言:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗?回顾:研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.作图:在同一坐标系中画出下列函数图象:,讨论:(1)函数与的图象有什么关系?如何由的图象画出的图象?(2)根据两个函数的图象的特征,归纳出这两个指数函数的性质.变底数为3或后呢?新知:根据图象归纳指数函数的性质.a>10100,b≠1)的图象关于y轴对称,则有().A.a>bB.a1)在R上递减C.若a>a,则a>1D.若>1,则4.比较下列各组数的大小:;.5.在同一坐标系下,函数y=ax,y=bx,y=cx,y=dx的图象如右图,则a、b、c、d、1之间从小到大的顺序是.课后作业1.已知函数f(x)=a-(a∈R),求证:对任何,f(x)为增函数.2.求函数的定义域和值域,并讨论函数的单调性、奇偶性. §2.2.1对数与对数运算(1)学习目标1.理解对数的概念;2.能够说明对数与指数的关系;3.掌握对数式与指数式的相互转化.学习过程一、课前准备(预习教材P62~P64,找出疑惑之处)复习1:庄子:一尺之棰,日取其半,万世不竭.(1)取4次,还有多长?(2)取多少次,还有0.125尺?复习2:假设2002年我国国民生产总值为a亿元,如果每年平均增长8%,那么经过多少年国民生产是2002年的2倍?(只列式)二、新课导学※学习探究探究任务:对数的概念问题:截止到1999年底,我国人口约13亿.如果今后能将人口年平均增长率控制在1%,那么多少年后人口数可达到18亿,20亿,30亿?讨论:(1)问题具有怎样的共性?(2)已知底数和幂的值,求指数怎样求呢?例如:由,求x.新知:一般地,如果,那么数x叫做以a为底N的对数(logarithm).记作,其中a叫做对数的底数,N叫做真数试试:将复习2及问题中的指数式化为对数式.新知:我们通常将以10为底的对数叫做常用对数(commonlogarithm),并把常用对数简记为lgN在科学技术中常使用以无理数e=2.71828……为底的对数,以e为底的对数叫自然对数,并把自然对数简记作lnN试试:分别说说lg5、lg3.5、ln10、ln3的意义.反思:(1)指数与对数间的关系?时,.(2)负数与零是否有对数?为什么?(3),.※典型例题例1下列指数式化为对数式,对数式化为指数式.(1);(2);(3);(4);(5);(6)lg0.001=;(7)ln100=4.606.变式:lg0.001=?小结:注意对数符号的书写,与真数才能构成整体. 例2求下列各式中x的值:(1);(2);(3);(4).小结:应用指对互化求x.※动手试试练1.求下列各式的值.(1);(2);(3)10000.练2.探究三、总结提升※学习小结①对数概念;②lgN与lnN;③指对互化;④如何求对数值※知识拓展对数是中学初等数学中的重要内容,那么当初是谁首创“对数”这种高级运算的呢?在数学史上,一般认为对数的发明者是十六世纪末到十七世纪初的苏格兰数学家——纳皮尔(Napier,1550-1617年)男爵.在纳皮尔所处的年代,哥白尼的“太阳中心说”刚刚开始流行,这导致天文学成为当时的热门学科.可是由于当时常量数学的局限性,天文学家们不得不花费很大的精力去计算那些繁杂的“天文数字”,因此浪费了若干年甚至毕生的宝贵时间.纳皮尔也是当时的一位天文爱好者,为了简化计算,他多年潜心研究大数字的计算技术,终于独立发明了对数.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.若,则().A.4B.6C.8D.92.=().A.1B.-1C.2D.-23.对数式中,实数a的取值范围是().A.B.(2,5)C.D.4.计算:.5.若,则x=________,若,则y=___________.课后作业1.将下列指数式化成对数式,对数式化成指数式.(1);(2);(3)(4);(5);(6);(7).2.计算:(1);(2);(3);(3);(4). §§2.2.1对数与对数运算(2)学习目标1.掌握对数的运算性质,并能理解推导这些法则的依据和过程;2.能较熟练地运用对数运算法则解决问题..学习过程一、课前准备(预习教材P64~P66,找出疑惑之处)复习1:(1)对数定义:如果,那么数x叫做,记作.(2)指数式与对数式的互化:.复习2:幂的运算性质.(1);(2);(3).复习3:根据对数的定义及对数与指数的关系解答:(1)设,,求;(2)设,,试利用、表示·.二、新课导学※学习探究探究任务:对数运算性质及推导问题:由,如何探讨和、之间的关系?问题:设,,由对数的定义可得:M=,N=∴MN==,∴MN=p+q,即得MN=M+N根据上面的证明,能否得出以下式子?如果a>0,a¹1,M>0,N>0,则(1);(2);(3).反思:自然语言如何叙述三条性质?性质的证明思路?(运用转化思想,先通过假设,将对数式化成指数式,并利用幂运算性质进行恒等变形;然后再根据对数定义将指数式化成对数式)※典型例题例1用,,表示下列各式:(1);(2).例2计算:(1);(2);(3);(4)lg.探究:根据对数的定义推导换底公式(,且;,且;).试试:2000年人口数13亿,年平均增长率1℅,多少年后可以达到18亿?※动手试试 练1.设,,试用、表示.变式:已知lg2=0.3010,lg3=0.4771,求lg6、lg12.lg的值.练2.运用换底公式推导下列结论.(1);(2).练3.计算:(1);(2).三、总结提升※学习小结①对数运算性质及推导;②运用对数运算性质;③换底公式.※知识拓展①对数的换底公式;②对数的倒数公式.③对数恒等式:,,.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.下列等式成立的是()A.B.C.D.2.如果lgx=lga+3lgb-5lgc,那么().A.x=a+3b-cB.C.D.x=a+b3-c33.若,那么().A.B.C.D.4.计算:(1);(2).5.计算:.课后作业1.计算:(1);(2).2.设、、为正数,且,求证:. §2.2.1对数与对数运算(3)学习目标1.能较熟练地运用对数运算性质解决实践问题;2.加强数学应用意识的训练,提高解决应用问题的能力.学习过程一、课前准备(预习教材P66~P69,找出疑惑之处)复习1:对数的运算性质及换底公式.如果a>0,a¹1,M>0,N>0,则(1);(2);(3).换底公式.复习2:已知3=a,7=b,用a,b表示56.复习3:1995年我国人口总数是12亿,如果人口的年自然增长率控制在1.25℅,问哪一年我国人口总数将超过14亿?(用式子表示)二、新课导学※典型例题例120世纪30年代,查尔斯.里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为:,其中A是被测地震的最大振幅,是“标准地震”的振幅(使用标准地震振幅是为了修正测震仪距实际震中距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);(2)5级地震给人的振感已比较明显,计算7.6级地震最大振幅是5级地震最大振幅的多少倍?(精确到1)小结:读题摘要→寻找数量关系→利用对数计算.例2当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据些规律,人们获得了生物体碳14含量P与生物死亡年数t之间的关系.回答下列问题:(1)求生物死亡t年后它机体内的碳14的含量P,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(2)已知一生物体内碳14的残留量为P,试求该生物死亡的年数t,并用函数的观点来解释P和t之间的关系,指出是我们所学过的何种函数?(3)长沙马王墓女尸出土时碳14的余含量约占原始量的76.7%,试推算古墓的年代?反思:①P和t之间的对应关系是一一对应; ②P关于t的指数函数,则t关于P的函数为.※动手试试练1.计算:(1);(2).练2.我国的GDP年平均增长率保持为7.3%,约多少年后我国的GDP在2007年的基础上翻两番?三、总结提升※学习小结1.应用建模思想(审题→设未知数→建立x与y之间的关系→求解→验证);2.用数学结果解释现象.※知识拓展在给定区间内,若函数的图象向上凸出,则函数在该区间上为凸函数,结合图象易得到;在给定区间内,若函数的图象向下凹进,则函数在该区间上为凹函数,结合图象易得到.学习评价※自我评价你完成本节导学案的情况为().A.很好B.较好C.一般D.较差※当堂检测(时量:5分钟满分:10分)计分:1.(a≠0)化简得结果是(  ).A.-aB.a2C.|a|D.a2.若log7[log3(log2x)]=0,则=(  ).A.3B.C.D.3.已知,且,则m之值为().A.15B.C.±D.2254.若3a=2,则log38-2log36用a表示为.5.已知,,则;.课后作业1.化简:(1);(2).2.若,求的值. §2.2.2对数函数及其性质(1)学习目标1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养数形结合的思想方法,学会研究函数性质的方法.学习过程一、课前准备(预习教材P70~P72,找出疑惑之处)复习1:画出、的图象,并以这两个函数为例,说说指数函数的性质.复习2:生物机体内碳14的“半衰期”为5730年,湖南长沙马王堆汉墓女尸出土时,碳14的残余量约占原始含量的76.7%,试推算马王堆古墓的年代.(列式)二、新课导学※学习探究探究任务一:对数函数的概念问题:根据上题,用计算器可以完成下表:碳14的含量P0.50.30.10.010.001生物死亡年数t讨论:t与P的关系?(对每一个碳14的含量P的取值,通过对应关系,生物死亡年数t都有唯一的值与之对应,从而t是P的函数)新知:一般地,当a>0且a≠1时,函数叫做对数函数(logarithmicfunction),自变量是x;函数的定义域是(0,+∞).反思:对数函数定义与指数函数类似,都是形式定义,注意辨别,如:,都不是对数函数,而只能称其为对数型函数;对数函数对底数的限制,且.探究任务二:对数函数的图象和性质问题:你能类比前面讨论指数函数性质的思路,提出研究对数函数性质的内容和方法吗?研究方法:画出函数图象,结合图象研究函数性质.研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性.试试:同一坐标系中画出下列对数函数的图象.;.反思:(1)根据图象,你能归纳出对数函数的哪些性质?a>1010

10000+的老师在这里下载备课资料