福建省漳州市芗城中学高中数学2.1.1指数与指数幂的运算教案新人教A版必修1三维目标定向〖知识与技能〗(1)了解根式的概念,方根的概念及二者的关系;(2)理解分数指数幂的概念,掌握有理数指数幂的运算性质,并能运用性质进行计算和化简。〖过程与方法〗通过对实际问题的探究过程,感知应用数学解决问题的方法,理解分类讨论思想、化归与转化思想在数学中的应用。〖情感、态度与价值观〗通过对数学实例的探究,感受现实生活对数学的需求,体验数学知识与现实的密切联系。教学重难点根式、分数指数幂的概念及其性质。教学过程设计一、问题情境设疑问题1、根据国务院发展研究中心2000年发表的《未来20年我国发展前景分析》判断,未来20年,我国GDP(国内生产总值)年平均增长率可望达到7.3%,那么,在2001~2020年,各年的GDP可望为2000年的多少倍?问题2、当生物死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”,根据此规律,人们获得了生物体内碳14含量P与死亡年数t之间的关系,考古学家根据这个式子可以知道,生物死亡t年后,体内碳14含量P的值。二、核心内容整合(一)根式(1)平方根:;立方根:。(2)n次方根:如果,那么x叫做a的次方根。练习1、填空:(1)25的平方根等于_________;(2)27的立方根等于__________;(3)–32的五次方根等于_____________;(4)16的四次方根等于___________;(5)a6的三次方根等于_____________;(6)0的七次方根等于____________。性质:(1)当n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,记为:。
(2)当n为偶数时,正数的n次方根有两个,它们互为相反数,记为。(3)负数没有偶次方根,0的任何次方根都是0。(4)。练习2:求下列各式的值:(1);(2);(3);(4)。探究:一定成立吗?例1、求下列各式的值:(1);(2);(3);(4)。练习3:(1)计算;(2)若,求a的取值范围;(3)已知,则ba(填大于、小于或等于);(4)已知,求的值。(二)分数指数幂(1)整数指数幂:(简化运算,连加为乘,连乘为乘方)运算性质:(2)正分数指数幂引入:,小结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式,(分数指数幂形式)思考:根式的被开方数不能被根指数整除时,根式是否也可以写成分数指数幂的形式?如:如何表示?规定:(3)负分数指数幂
规定:如:规定:0的正分数指数幂等于0,0的负分数指数幂没有意义。由于整数指数幂,分数指数幂都有意义,因此,有理数指数幂是有意义的,整数指数幂的运算性质,可以推广到有理数指数幂,即:(1);(2);(3)。例题剖析例2、求值:例3、用分数指数幂的形式表示下列各式(其中a>0)例4、计算下列各式(式中字母都是正数)(1);(2)。例5、计算下列各式:(1);(2)。(三)无理指数幂问题:当指数是无理数时,如,我们又应当如何理解它呢?一般地,无理数指数幂(a>0,
是无理数)是一个确定的实数。有理数指数幂的运算性质同样适用于无理数指数幂。四、知识反馈:P54,练习,1,2,3。补充练习:1、已知,求的值。2、计算下列各式:(1);(2)。3、已知,求下列各式的值:(1);(2)。4、化简的结果是()(A)(B)(C)(D)5、等于()(A)(B)(C)(D)26、有意义,则的取值范围是。7、若,则。8、,下列各式总能成立的是()(A)(B)(C)(D)9、化简的结果是()(A)(B)(C)(D)五、三维体系构建1、根式与分数指数幂的意义2、根式与分数指数幂的相互转化3、有理指数幂的含义及其运算性质:(1);(2);(3)。
六、课后作业:P59,习题2.1,A组:1,2,3,4;B组:2。教学反思: