2.1.2指数函数及其性质
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:y=1xyy=ax(a>1)Oxyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:y=1xyy=ax(a>1)Oy=1xyy=ax(0<a<1)O
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:y=1xyy=ax(a>1)Oy=1xyy=ax(0<a<1)O(0,1)(0,1)
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1指数函数的图象和性质:y=1xyy=ax(a>1)Oy=1xyy=ax(0<a<1)O(0,1)(0,1)
复习引入a>10<a<1图象性质定义域R;值域(0,+∞)过点(0,1),即x=0时,y=1在R上是增函数在R上是减函数x>0时,ax>1;x<0时,0<ax<1x>0时,0<ax<1;x<0时,ax>1指数函数的图象和性质:y=1xyy=ax(a>1)Oy=1xyy=ax(0<a<1)O(0,1)(0,1)
1.解不等式:练习复习引入
2.练习复习引入
复习引入3.函数y=ax-1+4恒过定点.A.(1,5)B.(1,4)C.(0,4)D.(4,0)练习
4.下列函数中,值域为(0,+∞)的函数是()复习引入练习
讲授新课1.说明下列函数图象与指数函数y=2x的图象关系,并画出它们的图象:一、指数函数图象的变换
x-3-2-101230.1250.250.512480.250.51248160.512481632作出图象,显示出函数数据表
987654321-4-224Oxy
987654321-4-224Oxy
987654321-4-224Oxy
x-3-2-101230.1250.250.512480.06250.1250.250.51240.031250.06250.1250.250.512作出图象,显示出函数数据表
987654321-4-224Oxy
987654321-4-224Oxy
987654321-4-224Oxy
987654321-4-224Oxy
987654321-4-224Oxy
987654321-4-224Oxy
小结:向左平移a个单位得到f(x+a)的图象;向右平移a个单位得到f(x-a)的图象;向上平移a个单位得到f(x)+a的图象;向下平移a个单位得到f(x)-a的图象.f(x)的图象
小结:
例某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%.画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩留量是原来的一半(结果保留一个有效数字).二、实际问题
课堂小结1.指数复合函数的单调性;2.指数函数图象的变换.