2.2.1对数与对数运算第三课时换底公式及对数运算的应用
问题提出.(1)(2)(3)(1);(2);(3).1.对数运算有哪三条基本性质?2.对数运算有哪三个常用结论?
例1:用logax,logay,logaz表示下列各式
例2、计算
换底公式及对数运算的应用
知识探究(一):对数的换底公式思考2:你能用lg2和lg3表示log23吗?思考1:假设,则,从而有.进一步可得到什么结论?
思考4:我们把(a>0,且a≠1;c>0,且c≠1;b>0)叫做对数换底公式,该公式有什么特征?思考3:一般地,如果a>0,且a≠1;c>0,且c≠1;b>0,那么与哪个对数相等?如何证明这个结论?
知识探究(二):换底公式的变式思考1:与有什么关系?思考2:与有什么关系?
理论迁移例3计算:(1);(2)(log2125+log425+log85)·(log52+log254+log1258)
例420世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(1)假设在一次地震中,一个距离震中100千米的测震仪记录的地震最大振幅是20,此时标准地震的振幅是0.001,计算这次地震的震级(精确到0.1);
例420世纪30年代,里克特制订了一种表明地震能量大小的尺度,就是使用测震仪衡量地震能量的等级,地震能量越大,测震仪记录的地震曲线的振幅就越大.这就是我们常说的里氏震级M,其计算公式为M=lgA-lgA0.其中A是被测地震的最大振幅,A0是“标准地震”的振幅(使用标准振幅是为了修正测震仪距实际震中的距离造成的偏差).(2)5级地震给人的震感已比较明显,计算7.6级地震的最大振幅是5级地震的最大振幅的多少倍(精确到1).
作业:P68练习:6.P74习题2.2A组:6,11,12.