高中数学 2.2.2 对数函数及其性质习题 同步练习
加入VIP免费下载

高中数学 2.2.2 对数函数及其性质习题 同步练习

ID:1206876

大小:221.06 KB

页数:6页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.2.2对数函数及其性质班级:__________姓名:__________设计人__________日期__________课后练习【基础过关】1.若,则下列结论正确的是A.B.C.D.2.已知函数在上的最大值与最小值之和为,则的值为A.B.C.2D.43.已知,则的最小值为A.-2B.-3C.-4D.04.函数的图象大致是A.B.C.D.5.已知,,则关于的不等式的解集为         .6.已知函数的图象恒过定点,若点也在函数的图象上,则=         . 7.已知,求的最大值以及取最大值时 的值.8.已知函数.(1)求函数的定义域、值域;(2)若,求函数的值域.【能力提升】现有某种细胞100个,其中有占总数的细胞每小时分裂一次,即由1个细胞分裂成2个细胞,按这种规律发展下去,经过多少小时,细胞总数可以超过个?(参考数据:). 答案【基础过关】1.B【解析】∵,如图所示,∴0<b<a<1.2.C【解析】利用“增函数+增函数仍为增函数”“减函数+减函数仍为减函数”确定函数f(x)的单调性,根据单调性求最大值和最小值,进而求解a的值.当a>1时,函数和在[1,2]都是增函数,所以在[1,2]是增函数,当0<a<1时,函数和在[1,2]都是减函数,所以在[1,2]是减函数,由题意得,即,解得a=2或a=-3(舍去).3.A【解析】∵函数在上是增函数,∴当时,f(x)取最小值,最小值为.4.D 【解析】原函数的定义域为(0,+∞),首先去绝对值符号,可分两种情况x≥1及0<x<1讨论.①当x≥1时,函数化为:;淘汰C.②当0<x<1时,函数化为:.令,得,淘汰A、B,故选D.5.{x|3<x<4}【解析】原式转化为,∴∴0<x-3<1,∴3<x<4.6.-1【解析】当x+3=1,即x=-2时,对任意的a>0,且a≠1都有,所以函数图象恒过定点,若点A也在函数的图象上,则,∴b=-1.7.∴,∴. ∵函数f(x)的定义域为[1,9],∴要使函数有意义,必须满足,∴1≤x≤3,   ∴,∴.当,即x=3时,y=13.∴当x=3时,函数取得最大值13.8.(1)由2x-1>0得,,函数f(x)的定义域是,值域是R.(2)令u=2x-1,则由知,u∈[1,8].因为函数在[1,8]上是减函数,所以.所以函数f(x)在上的值域为[-3,0].【能力提升】解:现有细胞100个,先考虑经过1、2、3、4个小时后的细胞总数;1小时后,细胞总数为;2小时后,细胞总数为; 3小时后,细胞总数为;4小时后,细胞总数为;可见,细胞总数与时间(小时)之间的函数关系为:,由,得,解得,∴;∵,∴.答:经过46小时,细胞总数超过个.

10000+的老师在这里下载备课资料