§2.2.2对数函数及其性质(第一、二课时)一.教学目标1.知识技能①对数函数的概念,熟悉对数函数的图象与性质规律.②掌握对数函数的性质,能初步运用性质解决问题.2.过程与方法让学生通过观察对数函数的图象,发现并归纳对数函数的性质.3.情感、态度与价值观①培养学生数形结合的思想以及分析推理的能力;②培养学生严谨的科学态度.二.学法与教学用具1.学法:通过让学生观察、思考、交流、讨论、发现函数的性质;2.教学手段:多媒体计算机辅助教学.三.教学重点、难点1、重点:理解对数函数的定义,掌握对数函数的图象和性质.2、难点:底数a对图象的影响及对数函数性质的作用.四.教学过程1.设置情境在2.2.1的例6中,考古学家利用估算出土文物或古遗址的年代,对于每一个C14含量P,通过关系式,都有唯一确定的年代与之对应.同理,对于每一个对数式中的,任取一个正的实数值,均有唯一的值与之对应,所以的函数.2.探索新知一般地,我们把函数(>0且≠1)叫做对数函数,其中是自变量,函数的定义域是(0,+∞).提问:(1).在函数的定义中,为什么要限定>0且≠1.(2).为什么对数函数(>0且≠1)的定义域是(0,+∞).组织学生充分讨论、交流,使学生更加理解对数函数的含义,从而加深对对数函数的理解.答:①根据对数与指数式的关系,知可化为,由指数的概念,要使有意义,必须规定>0且≠1.②因为可化为,不管取什么值,由指数函数的性质,>0,所以.
例题1:求下列函数的定义域(1)(2)(>0且≠1)分析:由对数函数的定义知:>0;>0,解出不等式就可求出定义域.解:(1)因为>0,即≠0,所以函数的定义域为.(2)因为>0,即<4,所以函数的定义域为<.下面我们来研究函数的图象,并通过图象来研究函数的性质:先完成P81表2-3,并根据此表用描点法或用电脑画出函数再利用电脑软件画出124681216-10122.5833.584y 0 x 注意到:,若点的图象上,则点的图象上.由于()与()关于轴对称,因此,的图象与的图象关于轴对称.所以,由此我们可以画出的图象.先由学生自己画出的图象,再由电脑软件画出与的图象.探究:选取底数>0,且≠1)的若干不同的值,在同一平面直角坐标系内作出相应的对数函数的图象.观察图象,你能发现它们有哪些特征吗?.作法:用多媒体再画出,,和
0提问:通过函数的图象,你能说出底数与函数图象的关系吗?函数的图象有何特征,性质又如何?先由学生讨论、交流,教师引导总结出函数的性质.(投影)图象的特征函数的性质(1)图象都在轴的右边(1)定义域是(0,+∞)(2)函数图象都经过(1,0)点(2)1的对数是0(3)从左往右看,当>1时,图象逐渐上升,当0<<1时,图象逐渐下降.(3)当>1时,是增函数,当0<<1时,是减函数.(4)当>1时,函数图象在(1,0)点右边的纵坐标都大于0,在(1,0)点左边的纵坐标都小于0.当0<<1时,图象正好相反,在(1,0)点右边的纵坐标都小于0,在(1,0)点左边的纵坐标都大于0.(4)当>1时>1,则>00<<1,<0当0<<1时>1,则<00<<1,<0由上述表格可知,对数函数的性质如下(先由学生仿造指数函数性质完成,教师适当启发、引导):>10<<1图象性质(1)定义域(0,+∞);(2)值域R;(3)过点(1,0),即当=1,=0
(4)在(0,+∞)上是增函数在(0,+∞)是上减函数例题训练:1.比较下列各组数中的两个值大小(1)(2)(3)(>0,且≠1)分析:由数形结合的方法或利用函数的单调性来完成:(1)解法1:用图形计算器或多媒体画出对数函数的图象.在图象上,横坐标为3、4的点在横坐标为8.5的点的下方:所以,解法2:由函数+上是单调增函数,且3.4<8.5,所以.解法3:直接用计算器计算得:,(2)第(2)小题类似(3)注:底数是常数,但要分类讨论的范围,再由函数单调性判断大小.解法1:当>1时,在(0,+∞)上是增函数,且5.1<5.9.所以,当1时,在(0,+∞)上是减函数,且5.1<5.9.所以,解法2:转化为指数函数,再由指数函数的单调判断大小不一,令令则当>1时,在R上是增函数,且5.1<5.9所以,<,即<当0<<1时,在R上是减函数,且5.1>5.9所以,<,即>说明:先画图象,由数形结合方法解答课堂练习:P85 练习 第2,3题
补充练习1.已知函数的定义域为[-1,1],则函数的定义域为2.求函数的值域.3.已知<<0,按大小顺序排列m,n,0,14.已知0<<1,b>1,ab>1.比较归纳小结:②对数函数的概念必要性与重要性;②对数函数的性质,列表展现.对数函数(第三课时)一.教学目标:1.知识与技能(1)知识与技能(2)了解反函数的概念,加深对函数思想的理解.2.过程与方法学生通过观察和类比函数图象,体会两种函数的单调性差异.3.情感、态度、价值观(1)体会指数函数与指数;(2)进一步领悟数形结合的思想.二.重点、难点:重点:指数函数与对数函数内在联系难点:反函数概念的理解三.学法与教具:学法:通过图象,理解对数函数与指数函数的关系.教具:多媒体四.教学过程:1.复习(1)函数的概念(2)用列表描点法在同一个直角坐标点中画出的函数图象.`2.讲授新知…-3-2-10123……1248…
…-3-2-10123……1248…图象如下:y0x探究:在指数函数中,为自变量,为因变量,如果把当成自变量,当成因变量,那么是的函数吗?如果是,那么对应关系是什么?如果不是,请说明理由.引导学生通过观察、类比、思考与交流,得出结论.在指数函数中,是自变量,是的函数(),而且其在R上是单调递增函数.过轴正半轴上任意一点作轴的平行线,与的图象有且只有一个交点.由指数式与对数式关系,,即对于每一个,在关系式的作用之下,都有唯一的确定的值和它对应,所以,可以把作为自变量,作为的函数,我们说.从我们的列表中知道,是同一个函数图象.3.引出反函数的概念(只让学生理解,加宽学生视野)当一个函数是一一映射时,可以把这个函数的因变量作为一个新的函数自变量,而把这个函数的自变量作为新的函数的因变量,我们称这两个函数为反函数.由反函数的概念可知,同底的指数函数和对数函数互为反函数.如的反函数,但习惯上,通常以表示自变量,表示函数,对调
中的,这样是指数函数的反函数.以后,我们所说的反函数是对调后的函数,如的反函数是.同理,>1)的反函数是>0且.课堂练习:求下列函数的反函数(1)(2)归纳小结:1.今天我们主要学习了什么?2.你怎样理解反函数?课后思考:(供学有余力的学生练习)我们知道>0与对数函数>0且互为反函数,探索下列问题.1.在同一平面直角坐标系中,画出的图象,你能发现这两个函数有什么样的对称性吗?2.取图象上的几个点,写出它们关于直线的对称点坐标,并判断它们是否在的图象上吗?为什么?3.由上述探究你能得出什么结论,此结论对于>0成立吗?