对数函数及其性质(一)对数函数的概念与图象
思考考古学家一般通过提取附着在出土文物、古遗址上死亡的残留物,利用估计出土文物或古遗址的年代.t能不能看成是P的函数?根据问题的实际意义可知,对于每一个碳14含量P,通过对应关系,都有唯一确定的年代t与它对应,所以,t是P的函数.
一般地,函数y=logax(a>0,且a≠1)叫做对数函数.其中x是自变量,函数的定义域是(0,+∞).对数函数的定义:注意:1)对数函数定义的严格形式;,且2)对数函数对底数的限制条件:
在同一坐标系中用描点法画出对数函数的图象。作图步骤:①列表,②描点,③用平滑曲线连接。探究:对数函数:y=logax(a>0,且a≠1)图象与性质
X1/41/2124…y=log2x-2-1012…列表描点作y=log2x图象连线21-1-21240yx3探究:对数函数:y=logax(a>0,且a≠1)图象与性质
列表描点连线21-1-21240yx3x1/41/2124210-1-2-2-1012思考这两个函数的图象有什么关系呢?关于x轴对称探究:对数函数:y=logax(a>0,且a≠1)图象与性质………………
图象特征代数表述定义域:(0,+∞)值域:R增函数在(0,+∞)上是:探索发现:认真观察函数y=log2x的图象填写下表图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐上升探究:对数函数:y=logax(a>0,且a≠1)图象与性质21-1-21240yx3
图象特征函数性质定义域:(0,+∞)值域:R减函数在(0,+∞)上是:图象位于y轴右方图象向上、向下无限延伸自左向右看图象逐渐下降探究:对数函数:y=logax(a>0,且a≠1)图象与性质探索发现:认真观察函数的图象填写下表21-1-21240yx3
思考:对数函数:y=logax(a>0,且a≠1)图象随着a的取值变化图象如何变化?有规律吗?21-1-21240yx3规律:在x轴上方图象自左向右底数越来越大!x
图象性质a>10<a<1定义域:值域:过定点:在(0,+∞)上是:在(0,+∞)上是对数函数y=logax(a>0,且a≠1)的图象与性质(0,+∞)R(1,0),即当x=1时,y=0增函数减函数yXOx=1(1,0)yXOx=1(1,0)
例1求下列函数的定义域:(1)(2)讲解范例解:解:由得∴函数的定义域是由得∴函数的定义域是
练习1.求下列函数的定义域:(1)(2)
比较下列各组中,两个值的大小:(1)log23.4与log28.5∴log23.41,∴函数在区间(0,+∞)上是增函数;∵3.4