2.2.2(2)对数函数及其性质(教学设计)(内容:图象与性质应用)教学目的:(1)进一步理解对数函数的图象和性质;(2)熟练应用对数函数的图象和性质,解决一些综合问题;(3)通过例题和练习的讲解与演练,培养学生分析问题和解决问题的能力.教学重点:对数函数的图象和性质.教学难点:对对数函数的性质的综合运用.教学过程:一、复习回顾,新课引入:1.完成下表(对数函数且的图象和性质)图象定义域值域性质二、师生互动,新课讲解:例1:在同一坐标系作出函数的图象如图所示,回答下列问题.(1)说明哪个函数对应于哪个图象,并解释为什么?(2)函数与且有什么关系?图象之间又有什么特殊的关系?(3)以的图象为基础,在同一坐标系中画出,,,,的图象.
思考底数是如何影响函数的.(学生独立思考,师生共同总结)小结:当a>1时,函数单调递增,a越大,图象越靠近x轴;当0m>1(C)1>m>n>0(D)1>n>m>0