集合的基本关系
集合间的基本关系实数有相等关系、大小关系,如5=5,5<7,5>3,等等,类比实数之间的关系,你会想到集合之间的什么关系?思考
观察下面几个例子,你能发现两个集合之间的关系吗?⑴A={1,2,3},B={1,2,3,4,5};⑵设A为我校高一(5)班女生的全体组成的集合,B为这个班学生的全体组成的集合;⑶设C={x|x是两条边相等的三角形},D={x|x是等腰三角形}.
1.子集的概念一般地,对于两个集合A、B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集.BA
判断集合A是否为集合B的子集,若是则在()打√,若不是则在()打×:①A={1,3,5},B={1,2,3,4,5,6}()②A={1,3,5},B={1,3,6,9}()③A={0},B={xx2+2=0}()④A={a,b,c,d},B={d,b,c,a}()××√√
观察集合A与集合B的关系:(1)A={1,3,5},B={1,2,3,4,5,6}(2)A={四边形},B={多边形}
(1)A={a,b,c,d},B={d,b,c,a}(2)A={-1,1},B={xx2-1=0}观察集合A与集合B的关系:
BA图中A是否为B的子集?(1)BA(2)
⑴集合A不包含于集合B,或集合B不包含集合A时,记作ABBA注意⑵规定:空集是任何集合的子集.即对任何集合A,都有:A//
子集的性质(1)对任何集合A,都有:AA(2)对于集合A,B,C,若AB,且BC,则有AC(3)空集是任何非空集合的真子集.
例题讲解例1写出{0,1,2}的所有子集,并指出其中哪些是它的真子集.例2设A={x,x2,xy},B={1,x,y},且A=B,求实数x,y的值.例3若A={x-3≤x≤4},B={x2m-1≤x≤m+1},当BA时,求实数m的取值范围.
课堂练习1.教材P.9,T1,2,32.以下六个关系式:①{}∈{}③{0}φ④0φ⑤φ≠{0}⑥φ={φ},其中正确的序号是:①②③④⑤