1.2.1函数的概念
1.1集合1.1.1集合的含义与表示(1课时)1.1.2集合间的基本关系(1课时)1.1.3集合的基本运算(1课时)1.2函数及其表示1.2.1函数的概念(1课时)1.2.2函数的表示方法(2课时)1.3函数的基本性质1.3.1函数的单调性与最大(小)值(2课时)1.3.2奇偶性(1课时)第一章复习与测试(1)课本从大家熟悉的集合出发,给出元素、集合的含义及表示方法;通过类比实数间的大小关系、运算引入集合间的关系、运算,同时介绍子集和全集等概念.(2)函数是中学数学最重要的基本概念之一.函数分上阶段学习:(初中)函数概念、正(反)比例函数、一次函数、二次函数及其图像和性质.(高一必修)函数概念、基本性质、基本初等函数(I、II).(高二选修)导数及其应用.(3)实习作业:收集17世纪前后对数学发展起重大作用的历史事件和人物(开普勒、伽利略、笛卡尔、牛顿、莱布尼兹、欧拉等)的有关资料.本章内容简介
1.理解函数的概念,体会对应关系在刻画函数概念中的作用.2.掌握构成函数的三要素,会求一些简单函数的定义域.3.会用区间表示连续数集.学习目标
设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有惟一的值与它对应,则称x是自变量,y是x的函数.1.初中学习的函数概念是什么?2.请问:我们在初中学过哪些函数?一、初中的函数
时间t的变化范围是数集A={t|0≤t≤26},高度h的变化范围是数集B={h|0≤h≤845}对于数集A中的任意一个时刻t,按照对应关系h=130t-5t2,在数集B中都有惟一的高度h和它对应二、课本的实例
二、课本的实例时间t的变化范围是数集A={t|1979≤t≤2001}面积S的变化范围是数集B={S|0≤S≤26}对于数集A中的每一个时刻t,按照图中的曲线,在数集B中都有惟一确定的臭氧层空洞面积S和它对应.
时间构成一个数集A,恩格尔系数构成一个数集B.对于数集A中的每一个时刻t,按照表中的对应值,在数集B中都有惟一确定的恩格尔系数和它对应.二、课本的实例
不同点实例(1)是用解析式刻画变量之间的对应关系,实例(2)是用图象刻画变量之间的对应关系,实例(3)是用表格刻画变量之间的对应关系.共同点(1)都有两个非空数集(2)两个数集之间都有一种确定的对应关系对于数集A中的每一个x,按照某种对应关系f,在数集B中都有惟一确定的y和它对应,记作f:A→B.二、课本的实例
设A、B是非空数集,如果按照某种对应关系f,使对于集合A中的任意一个数x,在集合B中都有惟一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.(1)y=f(x)作为一个整体,既可以用解析式表示,也可以用图象或表格表示.(2)函数y=f(x)是由三部分组成:定义域、值域和对应法则.(3)值域由定义域和对应法则惟一确定.初中各类函数的对应法则、定义域、值域分别是什么?三、函数的概念
二次函数一次函数反比例函数正比例函数值域定义域对应法则函数RRRRR三、函数的概念
三、函数的概念判断下列对应能否表示y是x的函数(1)y=|x|(2)|y|=x(3)y=x2(4)y2=x(5)y2+x2=1(6)y2-x2=1判断下列图象能表示函数图象的是()
试用区间表示下列实数集合(1){x|5≤x