1.2.1函数的概念
1.函数的概念传统定义:设在一个变化过程中有两个变量x与y,如果对于x的每一个值,y都有唯一的值与它对应,那么就说y是x的函数,x是自变量。
几类函数:一次函数反比例函数二次函数
判断:(1):(2):
1.定义形成概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,1.定义形成概念
设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作:y=f(x),xA1.定义形成概念
其中,x叫做自变量,1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x值相对应的y的值叫做函数值,1.定义
其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x值相对应的y的值叫做函数值,函数值的集合{f(x)|xA}叫做函数的值域.显然值域是集合B的子集.1.定义
定义域A;值域{f(x)|x∈A};对应法则f.2.函数的三要素:
定义域A;值域{f(x)|x∈R};对应法则f.2.函数的三要素:(2)f表示对应法则,不同函数中f的具体含义不一样;函数符号y=f(x)表示y是x的函数,f(x)不是表示f与x的乘积;
练习1.讨论下列对应是否是从集合A到集合B的函数.
一次函数反比例函数二次函数练习2.讨论几类已知函数的三要素:
3.阅读教材P17.相关区间内容