1.2.1 函数的概念[读教材·填要点]1.函数的概念(1)函数的定义:设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.(2)函数的定义域与值域:函数y=f(x)中,x叫自变量,x的取值范围叫做函数的定义域,与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.显然,值域是集合B的子集.2.区间概念(a,b为实数,且a<b)定义名称符号数轴表示{x|a≤x≤b}闭区间[a,b]{x|a<x<b}开区间(a,b){x|a≤x<b}半开半闭区间[a,b){x|a<x≤b}半开半闭区间(a,b] 3.其它区间的表示定义R{x|x≥a}{x|x>a}{x|x≤a}{x|x<a}符号(-∞,+∞)[a,+∞)(a,+∞)(-∞,a](-∞,a)[小问题·大思维]1.从函数的定义看,它的定义域和值域能否为空集?提示:因为定义中的A、B是非空数集,所以函数的定义域和值域都不能为空集.2.所有的数集都能用区间表示吗?提示:区间是数集的另一种表示方法,但并不是所有数集都能用区间表示,如{1,2,3,4}就不能用区间表示.3.如何用区间表示下列数集?(1){x|x≥1};(2){x|2<x≤3};
(3){x|x>1且x≠2}.提示:(1)[1,+∞) (2)(2,3](3)(1,2)∪(2,+∞)函数概念的应用[例1] 设M={x|0≤x≤2},N={y|0≤y≤2},给出下列四个图形,其中能表示从集合M到集合N的函数关系的有( )A.0个 B.1个C.2个D.3个[自主解答] 图号正误原因①×x=2时,在N中无元素与之对应,不满足任意性.②√同时满足任意性与唯一性.③×x=2时,对应元素y=3∉N,不满足任意性.④×x=1时,在N中有两个元素与之对应,不满足唯一性.[答案] B——————————————————判断所给对应是否是函数,首先观察两个集合A、B是否是非空数集,其次验证对应关系下,集合A中数x的任意性,集合B中数y的唯一性.————————————————————————————————————————1.图中(1)(2)(3)(4)四个图象各表示两个变量x,y的对应关系,其中表示y是x的函数关系的有________.
解析:由函数定义可知,任意作一条直线x=a,则与函数的图象至多有一个交点,对于本题而言,当-1≤a≤1时,直线x=a与函数的图象仅有一个交点,当a>1或a