2018年秋高中数学1.2.1 函数的概念学案 人教版必修
加入VIP免费下载

2018年秋高中数学1.2.1 函数的概念学案 人教版必修

ID:1207464

大小:116 KB

页数:6页

时间:2022-08-08

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
1.2.1 函数的概念学习目标:1.进一步体会函数是描述变量之间的依赖关系的重要数学模型.能用集合与对应的语言刻画出函数,体会对应关系在刻画数学概念中的作用.(重点、难点)2.了解构成函数的要素,会求一些简单函数的定义域和值域.(重点)3.能够正确使用区间表示数集.(易混点)[自主预习·探新知]1.函数的概念定义设A,B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么对称f:A→B为从集合A到集合B的一个函数三要素对应关系y=f(x),x∈A定义域自变量x的取值范围值域与x的值相对应的y的值的集合{f(x)|x∈A}思考1:(1)有人认为“y=f(x)”表示的是“y等于f与x的乘积”,这种看法对吗?(2)f(x)与f(a)有何区别与联系?[提示] (1)这种看法不对.符号y=f(x)是“y是x的函数”的数学表示,应理解为x是自变量,它是关系所施加的对象;f是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y是自变量的函数,当x允许取某一具体值时,相应的y值为与该自变量值对应的函数值.y=f(x)仅仅是函数符号,不表示“y等于f与x的乘积”.在研究函数时,除用符号f(x)外,还常用g(x),F(x),G(x)等来表示函数.(2)f(x)与f(a)的区别与联系:f(a)表示当x=a时,函数f(x)的值,是一个常量,而f(x)是自变量x的函数,一般情况下,它是一个变量,f(a)是f(x)的一个特殊值,如一次函数f(x)=3x+4,当x=8时,f(8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a,b∈R,且a-1且x≠1}.(3)函数有意义,当且仅当解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x的取值必须满足解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.母题探究:1.(变结论)在本例(3)条件不变的前提下,求函数y=f(x+1)的定义域.[解] 由1≤x+1≤3得0≤x≤2.所以函数y=f(x+1)的定义域为[0,2].2.(变化论)在本例(3)条件不变的前题下,求函数y=f(x+1)+的定义域.[解] 由,得1≤x≤2.∴函数的定义域为[1,2].[规律方法] 求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义. [当堂达标·固双基]1.已知函数f(x)=,则f=(  )A.        B.C.aD.3aD [f=3a,故选D.]2.下列表示的是y关于x的函数的是(  )【导学号:37102088】A.y=x2B.y2=xC.|y|=xD.|y|=|x|A [结合函数的定义可知A正确,选A.]3.下列函数中,与函数y=x相等的是(  )A.y=()2B.y=C.y=|x|D.y=D [函数y=x的定义域为R;y=()2的定义域为[0,+∞);y==|x|,对应关系不同;y=|x|对应关系不同;y==x,且定义域为R.故选D.]4.将函数y=的定义域用区间表示为________.(-∞,0)∪(0,1] [由解得x≤1且x≠0,用区间表示为(-∞,0)∪(0,1].]5.已知函数f(x)=x+,(1)求f(x)的定义域;(2)求f(-1),f(2)的值;(3)当a≠-1时,求f(a+1)的值.【导学号:37102089】[解] (1)要使函数f(x)有意义,必须使x≠0,∴f(x)的定义域是(-∞,0)∪(0,+∞).(2)f(-1)=-1+=-2,f(2)=2+=.(3)当a≠-1时,a+1≠0,∴f(a+1)=a+1+.

10000+的老师在这里下载备课资料