1.3.2函数的奇偶性●知识梳理1.奇函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=-f(x)〔或f(x)+f(-x)=0〕,则称f(x)为奇函数.2.偶函数:对于函数f(x)的定义域内任意一个x,都有f(-x)=f(x)〔或f(x)-f(-x)=0〕,则称f(x)为偶函数.3.奇、偶函数的性质(1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y轴对称.(3)若奇函数的定义域包含数0,则f(0)=0.(4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f(x)都可以唯一表示成一个奇函数与一个偶函数之和.●点击双基1.下面四个结论中,正确命题的个数是①偶函数的图象一定与y轴相交②奇函数的图象一定通过原点③偶函数的图象关于y轴对称④既是奇函数,又是偶函数的函数一定是f(x)=0(x∈R)A.1B.2C.3D.4解析:①不对;②不对,因为奇函数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为f(x)=0〔x∈(-a,a)〕.答案:A2.已知函数f(x)=ax2+bx+c(a≠0)是偶函数,那么g(x)=ax3+bx2+cx是A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数解析:由f(x)为偶函数,知b=0,有g(x)=ax3+cx(a≠0)为奇函数.答案:A3.若偶函数f(x)在区间[-1,0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是A.f(cosα)>f(cosβ)B.f(sinα)>f(cosβ)
C.f(sinα)>f(sinβ)D.f(cosα)>f(sinβ)解析:∵偶函数f(x)在区间[-1,0]上是减函数,∴f(x)在区间[0,1]上为增函数.由α、β是锐角三角形的两个内角,∴α+β>90°,α>90°-β.1>sinα>cosβ>0.∴f(sinα)>f(cosβ).答案:B4.已知f(x)=ax2+bx+3a+b是偶函数,且其定义域为[a-1,2a],则a=___________,b=___________.解析:定义域应关于原点对称,故有a-1=-2a,得a=.又对于所给解析式,要使f(-x)=f(x)恒成立,应b=0.答案:05.给定函数:①y=(x≠0);②y=x2+1;③y=2x;④y=log2x;⑤y=log2(x+).在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.答案:①⑤②③④●典例剖析【例1】已知函数y=f(x)是偶函数,y=f(x-2)在[0,2]上是单调减函数,则A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(-1)<f(0)剖析:由f(x-2)在[0,2]上单调递减,∴f(x)在[-2,0]上单调递减.∵y=f(x)是偶函数,∴f(x)在[0,2]上单调递增.又f(-1)=f(1),故应选A.答案:A
【例2】判断下列函数的奇偶性:(1)f(x)=|x+1|-|x-1|;(2)f(x)=(x-1)·;(3)f(x)=;(4)f(x)=剖析:根据函数奇偶性的定义进行判断.解:(1)函数的定义域x∈(-∞,+∞),对称于原点.∵f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-(|x+1|-|x-1|)=-f(x),∴f(x)=|x+1|-|x-1|是奇函数.(2)先确定函数的定义域.由≥0,得-1≤x<1,其定义域不对称于原点,所以f(x)既不是奇函数也不是偶函数.(3)去掉绝对值符号,根据定义判断.由得故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x+2>0.从而有f(x)==,这时有f(-x)==-=-f(x),故f(x)为奇函数.(4)∵函数f(x)的定义域是(-∞,0)∪(0,+∞),并且当x>0时,-x<0,∴f(-x)=(-x)[1-(-x)]=-x(1+x)=-f(x)(x>0).当x<0时,-x>0,∴f(-x)=-x(1-x)=-f(x)(x<0).故函数f(x)为奇函数.评述:(1)分段函数的奇偶性应分段证明.(2)判断函数的奇偶性应先求定义域再化简函数解析式.【例3】(2005年北京东城区模拟题)函数f(x)的定义域为D={x|x≠0},且满足对于任意x1、x2∈D,有f(x1·x2)=f(x1)+f(x2).
(1)求f(1)的值;(2)判断f(x)的奇偶性并证明;(3)如果f(4)=1,f(3x+1)+f(2x-6)≤3,且f(x)在(0,+∞)上是增函数,求x的取值范围.(1)解:令x1=x2=1,有f(1×1)=f(1)+f(1),解得f(1)=0.(2)证明:令x1=x2=-1,有f[(-1)×(-1)]=f(-1)+f(-1).解得f(-1)=0.令x1=-1,x2=x,有f(-x)=f(-1)+f(x),∴f(-x)=f(x).∴f(x)为偶函数.(3)解:f(4×4)=f(4)+f(4)=2,f(16×4)=f(16)+f(4)=3.∴f(3x+1)+f(2x-6)≤3即f[(3x+1)(2x-6)]≤f(64).(*)∵f(x)在(0,+∞)上是增函数,∴(*)等价于不等式组或或或∴3<x≤5或-≤x<-或-<x<3.∴x的取值范围为{x|-≤x<-或-<x<3或3<x≤5}.评述:解答本题易出现如下思维障碍:(1)无从下手,不知如何脱掉“f”.解决办法:利用函数的单调性.(2)无法得到另一个不等式.解决办法:关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反.深化拓展已知f(x)、g(x)都是奇函数,f(x)>0的解集是(a2,b),g(x)>0的解集是(,),>a2,那么f(x)·g(x)>0的解集是A.(,)B.(-b,-a2)
C.(a2,)∪(-,-a2)D.(,b)∪(-b2,-a2)提示:f(x)·g(x)>0或∴x∈(a2,)∪(-,-a2).答案:C【例4】(2004年天津模拟题)已知函数f(x)=x++m(p≠0)是奇函数.(1)求m的值.(2)(理)当x∈[1,2]时,求f(x)的最大值和最小值.(文)若p>1,当x∈[1,2]时,求f(x)的最大值和最小值.解:(1)∵f(x)是奇函数,∴f(-x)=-f(x).∴-x-+m=-x--m.∴2m=0.∴m=0.(2)(理)(ⅰ)当p<0时,据定义可证明f(x)在[1,2]上为增函数.∴f(x)max=f(2)=2+,f(x)min=f(1)=1+p.(ⅱ)当p>0时,据定义可证明f(x)在(0,]上是减函数,在[,+∞)上是增函数.①当<1,即0<p<1时,f(x)在[1,2]上为增函数,∴f(x)max=f(2)=2+,f(x)min=f(1)=1+p.②当∈[1,2]时,f(x)在[1,p]上是减函数.在[p,2]上是增函数.f(x)min=f()=2.f(x)max=max{f(1),f(2)}=max{1+p,2+}.当1≤p≤2时,1+p≤2+,f(x)max=f(2);当2<p≤4时,1+p≥2+,f(x)max=f(1).③当>2,即p>4时,f(x)在[1,2]上为减函数,∴f(x)max=f(1)=1+p,f(x)min=f(2)=2+.(文)解答略.
评述:f(x)=x+(p>0)的单调性是一重要问题,利用单调性求最值是重要方法.1.2函数的基本性质要点精讲1.奇偶性(1)定义:如果对于函数f(x)定义域内的任意x都有f(-x)=-f(x),则称f(x)为奇函数;如果对于函数f(x)定义域内的任意x都有f(-x)=f(x),则称f(x)为偶函数。如果函数f(x)不具有上述性质,则f(x)不具有奇偶性.如果函数同时具有上述两条性质,则f(x)既是奇函数,又是偶函数。注意:函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(即定义域关于原点对称)。(2)利用定义判断函数奇偶性的格式步骤:首先确定函数的定义域,并判断其定义域是否关于原点对称;确定f(-x)与f(x)的关系;作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数;若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数。(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y轴对称;②设,的定义域分别是,那么在它们的公共定义域上:奇+奇=奇,奇奇=偶,偶+偶=偶,偶偶=偶,奇偶=奇2.单调性(1)定义:一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x11;①若x1f(2mcosθ-4m),即cos2θ-3>2mcosθ-4m,即cos2θ-mcosθ+2m-2>0。设t=cosθ,则问题等价地转化为函数g(t)=t2-mt+2m-2=(t-)2-+2m-2在[0,1]上的值恒为正,又转化为函数g(t)在[0,1]上的最小值为正。∴当1与m04-20m>1。∴m>2综上,符合题目要求的m的值存在,其取值范围是m>4-2。另法(仅限当m能够解出的情况):cos2θ-mcosθ+2m-2>0对于θ∈[0,]恒成立,等价于m
>(2-cos2θ)/(2-cosθ)对于θ∈[0,]恒成立∵当θ∈[0,]时,(2-cos2θ)/(2-cosθ)≤4-2,∴m>4-2。点评:上面两例子借助于函数的单调性处理了恒成立问题和不等式的求解问题。题型六:最值问题例11.(2002全国理,21)设a为实数,函数f(x)=x2+|x-a|+1,x∈R。(1)讨论f(x)的奇偶性;(2)求f(x)的最小值。解:(1)当a=0时,函数f(-x)=(-x)2+|-x|+1=f(x),此时f(x)为偶函数。当a≠0时,f(a)=a2+1,f(-a)=a2+2|a|+1,f(-a)≠f(a),f(-a)≠-f(a)。此时函数f(x)既不是奇函数,也不是偶函数。(2)①当x≤a时,函数f(x)=x2-x+a+1=(x-)2+a+。若a≤,则函数f(x)在(-∞,a)上单调递减,从而,函数f(x)在(-∞,a)上的最小值为f(a)=a2+1。若a>,则函数f(x)在(-∞,a上的最小值为f()=+a,且f()≤f(a)。②当x≥a时,函数f(x)=x2+x-a+1=(x+)2-a+。若a≤-,则函数f(x)在[a,+∞上的最小值为f(-)=-a,且f(-)≤f(a)。若a>-,则函数f(x)在[a,+∞]上单调递增,从而,函数f(x)在[a,+∞]上的最小值为f(a)=a2+1。综上,当a≤-时,函数f(x)的最小值是-a。当-<a≤时,函数f(x)的最小值是a2+1。
当a>时,函数f(x)的最小值是a+。点评:函数奇偶性的讨论问题是中学数学的基本问题,如果平时注意知识的积累,对解此题会有较大帮助.因为x∈R,f(0)=|a|+1≠0,由此排除f(x)是奇函数的可能性.运用偶函数的定义分析可知,当a=0时,f(x)是偶函数,第2题主要考查学生的分类讨论思想、对称思想。例12.设m是实数,记M={m|m>1},f(x)=log3(x2-4mx+4m2+m+)。(1)证明:当m∈M时,f(x)对所有实数都有意义;反之,若f(x)对所有实数x都有意义,则m∈M;(2)当m∈M时,求函数f(x)的最小值;(3)求证:对每个m∈M,函数f(x)的最小值都不小于1。(1)证明:先将f(x)变形:f(x)=log3[(x-2m)2+m+],当m∈M时,m>1,∴(x-m)2+m+>0恒成立,故f(x)的定义域为R。反之,若f(x)对所有实数x都有意义,则只须x2-4mx+4m2+m+>0。令Δ<0,即16m2-4(4m2+m+)<0,解得m>1,故m∈M。(2)解析:设u=x2-4mx+4m2+m+,∵y=log3u是增函数,∴当u最小时,f(x)最小。而u=(x-2m)2+m+,显然,当x=m时,u取最小值为m+,此时f(2m)=log3(m+)为最小值。(3)证明:当m∈M时,m+=(m-1)++1≥3,当且仅当m=2时等号成立。∴log3(m+)≥log33=1。点评:该题属于函数最值的综合性问题,考生需要结合对数函数以及二次函数的性质来进行处理。题型七:周期问题
例13.若y=f(2x)的图像关于直线和对称,则f(x)的一个周期为()A.B.C.D.解:因为y=f(2x)关于对称,所以f(a+2x)=f(a-2x)。所以f(2a-2x)=f[a+(a-2x)]=f[a-(a-2x)]=f(2x)。同理,f(b+2x)=f(b-2x),所以f(2b-2x)=f(2x),所以f(2b-2a+2x)=f[2b-(2a-2x)]=f(2a-2x)=f(2x)。所以f(2x)的一个周期为2b-2a,故知f(x)的一个周期为4(b-a)。选项为D。点评:考察函数的对称性以及周期性,类比三角函数中的周期变换和对称性的解题规则处理即可。若函数y=f(x)的图像关于直线x=a和x=b对称(a≠b),则这个函数是周期函数,其周期为2(b-a)。例14.已知函数是定义在上的周期函数,周期,函数是奇函数又知在上是一次函数,在上是二次函数,且在时函数取得最小值。①证明:;②求的解析式;③求在上的解析式。解:∵是以为周期的周期函数,∴,又∵是奇函数,∴,∴。②当时,由题意可设,由得,
∴,∴。③∵是奇函数,∴,又知在上是一次函数,∴可设,而,∴,∴当时,,从而当时,,故时,。∴当时,有,∴。当时,,∴∴。点评:该题属于普通函数周期性应用的题目,周期性是函数的图像特征,要将其转化成数字特征。五.思维总结1.判断函数的奇偶性,必须按照函数的奇偶性定义进行,为了便于判断,常应用定义的等价形式:f(-x)=±f(x)óf(-x)f(x)=0;2.对函数奇偶性定义的理解,不能只停留在f(-x)=f(x)和f(-x)=-f(x)这两个等式上,要明确对定义域内任意一个x,都有f(-x)=f(x),f(-x)=-f(x)的实质是:函数的定义域关于原点对称这是函数具备奇偶性的必要条件。稍加推广,可得函数f(x)的图象关于直线x=a对称的充要条件是对定义域内的任意x,都有f(x+a)=f(a-x)成立函数的奇偶性是其相应图象的特殊的对称性的反映;3.若奇函数的定义域包含0,则f(0)=0,因此,“f(x)为奇函数”是"f(0)=0"的非充分非必要条件;4.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,因此根据图象的对称性可以判断函数的奇偶性。5.若存在常数T,使得f(x+T)=f(x)对f(x)定义域内任意x恒成立,则称T为函数f(x)
的周期,一般所说的周期是指函数的最小正周期周期函数的定义域一定是无限集。6.单调性是函数学习中非常重要的内容,应用十分广泛,由于新教材增加了“导数”的内容,所以解决单调性问题的能力得到了很大的提高,因此解决具体函数的单调性问题,一般求导解决,而解决与抽象函数有关的单调性问题一般需要用单调性定义解决。注意,关于复合函数的单调性的知识一般用于简单问题的分析,严格的解答还是应该运用定义或求导解决。