黑龙江省宁安市东京城林业局第三中学高中数学2.1.1指数与指数幂的运算(2)学案(无答案)新人教A版必修1学习目标1.理解分数指数幂的概念;2.掌握根式与分数指数幂的互化;3.掌握有理数指数幂的运算.学习过程一、课前准备(预习教材)复习1:一般地,若,则叫做的,其中,.简记为:.像的式子就叫做,具有如下运算性质:=;=;=.复习2:整数指数幂的运算性质.(1);(2);(3).二、新课导学探究任务:分数指数幂引例:a>0时,,则类似可得;,类似可得.新知:规定分数指数幂如下反思:①0的正分数指数幂为;0的负分数指数幂为.②分数指数幂有什么运算性质?小结:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂.指数幂的运算性质:()·;;.※典型例题
例1求值:;;;.变式:化为根式.例2用分数指数幂的形式表示下列各式:(1);(2);(3).小结:在进行指数幂的运算时,一般地,化指数为正指数,化根式为分数指数幂,对含有指数式或根式的乘除运算,还要善于利用幂的运算法则.
※动手试试练1.把化成分数指数幂.练2.计算:(1);(2).三、总结提升※学习小结①分数指数幂的意义;②分数指数幂与根式的互化;③有理指数幂的运算性质.学习评价※当堂检测(时量:5分钟满分:10分)计分:1.若,且为整数,则下列各式中正确的是().A.B.C.D.2.化简的结果是().A.5B.15C.25D.1253.计算的结果是().A.B.C.D.4.化简=.5.若,则=.课后作业1.化简下列各式:(1);(2).
2.计算:.