第2课时指数幂及其运算
1.理解分数指数幂的含义,掌握根式与分数指数幂的互化.2.掌握指数幂的运算性质,并能对代数式进行化简或求值.
123
123
1232.有理数指数幂的运算性质(1)aras=ar+s(a>0,r,s∈Q);(2)(ar)s=ars(a>0,r,s∈Q);(3)(ab)r=arbr(a>0,b>0,r∈Q).归纳总结三条运算性质的文字叙述:(1)同底数幂相乘,底数不变,指数相加;(2)幂的乘方,底数不变,指数相乘;(3)积的乘方等于乘方的积.
123
1233.无理数指数幂一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数.有理数指数幂的运算性质同样适用于无理数指数幂.知识拓展在引入分数指数幂的概念后,指数概念就实现了由整数指数幂向有理数指数幂的扩展;在引入无理数指数幂的概念后,指数概念就实现了由有理数指数幂向实数指数幂的扩展.
123
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四反思在进行幂和根式的化简时,一般要先将根式化成幂的形式,并化小数指数幂为分数指数幂,尽可能地统一成分数指数幂形式,再利用幂的运算性质进行化简、求值和计算.
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四
题型一题型二题型三题型四