①同底数幂相乘,底数不变,指数,即②同底数幂相除,底数不变,指数,即③幂的乘方,底数不变,指数,即④积的乘方,等于各因式幂的积,即:幂底数指数n个a(1)幂的概念:(2)幂的运算法则:相加相减相乘思考:在运算法则②中,若去掉m>n会怎样??整数指数
规定:将正整数指数幂推广到整数指数幂m=nm1,且n∈N*.24=16(-2)4=1616的4次方根是±2.(-2)5=-32-32的5次方根是-2.2是128的7次方根.27=128即如果一个数的n次方等于a(n>1,且n∈N*),那么这个数叫做a的n次方根.
概念理解【1】试根据n次方根的定义分别求出下列各数的n次方根.(1)25的平方根是_______;(2)27的三次方根是_____;(3)-32的五次方根是____;(4)16的四次方根是_____;(5)a6的三次方根是_____;(6)0的七次方根是______.点评:求一个数a的n次方根就是求出哪个数的n次方等于a.±53-2±20a2
23=8(-2)3=-8(-2)5=-3227=1288的3次方根是2.-8的3次方根是-2.-32的5次方根是-2.128的7次方根是2.奇次方根1.正数的奇次方根是一个正数,2.负数的奇次方根是一个负数.n次方根的性质
72=49(-7)2=4934=81(-3)4=8149的2次方根是7,-7.81的4次方根是3,-3.偶次方根2.负数的偶次方根没有意义1.正数的偶次方根有两个且互为相反数26=64(-2)6=6464的6次方根是2,-2.
正数的奇次方根是正数.负数的奇次方根是负数.零的奇次方根是零.n次方根的性质(1)奇次方根有以下性质:(2)偶次方根有以下性质:正数的偶次方根有两个且是相反数,负数没有偶次方根,零的偶次方根是零.
根指数根式根式的概念被开方数
由xn=a可知,x叫做a的n次方根.9-8归纳总结1当n是奇数时,对任意a∊R都有意义.它表示a在实数范围内唯一的一个n次方根.当n是偶数时,只有当a≥0有意义,当a0,m,n∈N*,且n>1)注意:底数a>0这个条件不可少.若无此条件会引起混乱,例如,(-1)1/3和(-1)2/6应当具有同样的意义,但由分数指数幂的意义可得出不同的结果:=-1;=1.这就说明分数指数幂在底数小于0时无意义.用语言叙述:正数的次幂(m,n∈N*,且n>1)等于这个正数的m次幂的n次算术根.分数指数
⒉负分数指数幂的意义回忆负整数指数幂的意义:a-n=(a≠0,n∈N*).正数的负分数指数幂的意义和正数的负整数指数幂的意义相仿,就是:(a>0,m,n∈N*,且n>1).规定:0的正分数指数幂等于0;0的负分数指数幂没有意义.注意:负分数指数幂在有意义的情况下,总表示正数,而不是负数,负号只是出现在指数上.
⒋有理指数幂的运算性质我们规定了分数指数幂的意义以后,指数的概念就从整数指数推广到有理数指数.上述关于整数指数幂的运算性质,对于有理指数幂也同样适用,即对任意有理数r,s,均有下面的性质:⑴ar·as=ar+s(a>0,r,s∈Q);⑵(ar)s=ars(a>0,r,s∈Q);⑶(ab)r=arbr(a>0,b>0,r∈Q).说明:若a>0,p是一个无理数,则ap表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.即当指数的范围扩大到实数集R后,幂的运算性质仍然是下述的3条.
练习
思考2:我们知道=1.41421356…,那么的大小如何确定?我们又应如何理解它呢?思考1:上面,我们将指数的取值范围由整数推广到了有理数,并且整数幂的运算性质对于有理指数幂都适用.那么,当指数是无理数时呢?无理指数幂
的过剩近似值的过剩近似值1.511.180339891.429.8296353281.4159.7508518081.41439.739872621.414229.7386186431.4142149.7385246021.41421369.7385183321.414213579.7385178621.4142135639.738517752
的不足近似值的不足近似值9.5182696941.49.6726699731.419.7351710391.4149.7383051741.41429.7384619071.414219.7385089281.4142139.7385167651.41421359.7385177051.414213569.7385177361.414213562
例1.求值:解:数学运用
例2.如果 化简代数式解:解之,得所以
平方差公式:完全平方式:立方和公式:立方差公式:和的立方公式:差的立方公式:整理巩固要求:整理巩固探究问题落实基础知识