新人教A版必修1 高中数学 2.1.2 指数函数及其性质 课件
加入VIP免费下载

新人教A版必修1 高中数学 2.1.2 指数函数及其性质 课件

ID:1209604

大小:1.91 MB

页数:44页

时间:2022-08-09

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
第2课时 指数函数及其性质的应用 1.理解指数函数的单调性与底数a的关系,能运用指数函数的单调性解决一些问题.1.指数函数单调性在比较大小,解不等式及求最值中的应用.(重点) 1.函数y=ax(a>0,且a≠1)的定义域是R,值域是________.若a>1,则当x=0时,y__1;当x>0时,y>1;当x0,当x>0时,函数y=ax图象在y=bx图象的上方;当x0,且a≠1)和y=a-x(a>0,且a≠1)的图象关于____对称.y轴 复合函数y=af(x)单调性的确定:当a>1时,单调区间与f(x)的单调区间_____;当00.53x-4⇒23-2x>24-3x⇒3-2x>4-3x⇒x>1.答案:{x|x>1} 由题目可获取以下主要信息:①所给函数与指数函数有关;②定义域是使函数式有意义的自变量的取值集合,③值域是函数值的集合,依据定义域和函数的单调性求解. [题后感悟]对于y=af(x)这类函数,(1)定义域是指只要使f(x)有意义的x的取值范围(2)值域问题,应分以下两步求解:①由定义域求出u=f(x)的值域;②利用指数函数y=au的单调性求得此函数的值域. 解答本题可以看成关于2x的一个二次函数,故可令t=2x,利用换元法求值域. [解题过程]函数定义域为R.令2x=t(t>0),则y=4x+2x+1+1=t2+2t+1=(t+1)2.∵t>0,∴t+1>1,∴(t+1)2>1,∴y>1,∴值域为{y|y>1,y∈R}.[题后感悟]如何求形如y=b(ax)2+c·ax+d的值域?①换元,令t=ax;②求t的范围,t∈D;③求二次函数y=bt+ct+d,t∈D的值域. 如图所示:(1)f(x-1)的图象:需将f(x)的图象向右平移1个单位得f(x-1)的图象,如下图 (2)-f(x)的图象:作f(x)的图象关于x轴对称的图象得-f(x)的图象,如图(1)(3)f(-x)的图象:作f(x)的图象关于y轴对称的图象得f(-x)的图象,如图(2) [题后感悟]利用熟悉的函数图象作图,主要运用图象的平移、对称等变换,平移需分清楚向何方向移,要移多少个单位,如(1)(2);对称需分清对称轴是什么,如(3)(4). 利用复合函数的单调规律求之. [解题过程](1)设y=au,u=x2+2x-3.由u=x2+2x-3=(x+1)2-4知,u在(-∞,-1]上为减函数,在[-1,+∞)上为增函数.根据y=au的单调性,当a>1时,y关于u为增函数;当00且a≠1)的图象与y=-ax(a>0且a≠1)的图象关于x轴对称,函数y=ax(a>0且a≠1)的图象与y=-a-x(a>0且a≠1)的图象关于坐标原点对称. 2.y=φ(ax)型或y=af(x)型函数的单调规律研究形如y=af(x)(a>0,且a≠1)的函数的单调性,可以有如下结论:当a>1时,函数y=af(x)的单调性与f(x)的单调性相同;当0

10000+的老师在这里下载备课资料