1.(2010年高考广东卷)若函数f(x)=3x+3-x与g(x)=3x-3-x的定义域为R,则( )A.f(x)与g(x)均为偶函数B.f(x)为偶函数,g(x)为奇函数C.f(x)与g(x)均为奇函数D.f(x)为奇函数,g(x)为偶函数解析:选B.∵f(x)=3x+3-x,∴f(-x)=3-x+3x.∴f(x)=f(-x),即f(x)是偶函数.又∵g(x)=3x-3-x,∴g(-x)=3-x-3x.∴g(x)=-g(-x),即函数g(x)是奇函数.2.(2010年高考陕西卷)已知函数f(x)=若f[f(0)]=4a,则实数a等于( )A. B.C.2D.9解析:选C.∵f[f(0)]=f(20+1)=f(2)=22+2a=2a+4,∴2a+4=4a,∴a=2.3.不论a取何正实数,函数f(x)=ax+1-2恒过点( )A.(-1,-1)B.(-1,0)C.(0,-1)D.(-1,-3)解析:选A.f(-1)=-1,所以,函数f(x)=ax+1-2的图象一定过点(-1,-1).4.函数y=-2-x的图象一定过第________象限.解析:y=-2-x=-()x与y=()x关于x轴对称,一定过三、四象限.答案:三、四1.使不等式23x-1>2成立的x的取值为( )A.(,+∞)B.(1,+∞)C.(,+∞)D.(-,+∞)解析:选A.23x-1>2⇒3x-1>1⇒x>.2.为了得到函数y=3×()x的图象,可以把函数y=()x的图象( )A.向左平移3个单位长度B.向右平移3个单位长度C.向左平移1个单位长度D.向右平移1个单位长度解析:选D.因为3×()x=()-1×()x=()x-1,所以只需将函数y=()x的图象向右平移1个单位.3.在同一平面直角坐标系中,函数f(x)=ax与g(x)=ax(a>0且a≠1)的图象可能是( )解析:选B.由题意知,a>0,故f(x)=ax经过一、三象限,∴A、D不正确.若g(x)=ax为增函数,则a>1,与y=ax的斜率小于1矛盾,故C不正确;
B中0