《指数函数及其性质》教学设计教学目标一、知识与技能1.掌握指数函数的概念、图象和性质。2.能借助计算机或计算器画指数函数的图象。3.能由指数函数图象探索并理解指数函数的性质。二、过程与方法1.在学习的过程中体会研究具体函数及其性质的过程和方法,如具体到一般的过程,数形结合的方法等。2.通过探讨指数函数的底数a>0,且a≠1的理由,明确数学概念的严谨性和科学性,做一个具备严谨科学态度的人。三、情感态度与价值观1.通过实例引入指数函数,激发学生学习指数函数的兴趣。2.体会指数函数是一类重要的函数模型,并且有广泛的用途,逐步培养学生的应用意识。教学重点指数函数的概念、图象和性质。教学难点对底数的分类,如何由图象、解析式归纳指数函数的性质。教具多媒体课件教学过程教学环节师生互动设计意图(一)创设情景问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂x次后,得到的细胞分裂的个数y与x之间,构成一个函数关系,能写出x与y之间的函数关系式吗?学生思考,教师组织学生交流各自的想法,捕捉学生交流中与下列结论有关的信息,并简单板书学生回答:y与x之间的关系式,可以表示为y=2x通过问题引导学生思考我们本节课的教学重点,锻炼学生的主动思考能力总结归纳能力。问题2:一种放射性物质不断衰变为其他物质,每经过一年剩留的质量约是原来的84%.求出这种物质的剩留量随时间(单位:年)变化的函数关系.设最初的质量为1,时间变量用x学生回答::y与x之间的关系式,可以表示为y=0.84x教师提问:你能发现关系式y=2x,y=0.84x有什么相同的地方吗?学生讨论,教师引导学生观察,两个函数中,底数是常数,指数是自变量。通过两个生活中的例子引导学生发现规律,并
表示,剩留量用y表示。学生回答:这两个函数都是函数y=ax的具体形式.教师总结:函数y=ax是一类重要的函数模型,并且有广泛的用途,它可以解决好多生活中的实际问题,这就是我们下面所要研究的一类重要函数模型——指数函数.总结出指数函数的定义。教师通过总结归纳让学生学习到归纳重点的重要性。(二)讲解新课(一)指数函数的概念一般地,函数y=ax(a>0,a≠1)叫做指数函数,其中x是自变量,函数的定义域是R.问题:指数函数定义中,为什么规定“”如果不这样规定会出现什么情况?教师结合引入,给出指数函数的定义学生思考,教师适时点拨,给出如下解释:(1)若a