开始
学点一学点二学点三学点四学点五学点六学点七
1.一般地,函数叫做指数函数,其中x是,函数的定义域是值域是.2.函数y=ax(a>0,且a≠1),当时,在(-∞,+∞)上是增函数;当时,在(-∞,+∞)上是减函数.3.y=ax(a>0,且a≠1)的图象一定过点.当a>1时,若x>0,则y,若x0,且a≠1,m>0)的图象可以看成指数函数y=ax的图象向平移个单位得到的.y=ax(a>0,且a≠1)自变量R(0,+∞)a>101右2右m左m返回
5.函数y=ax和y=a-x的图象关于对称;函数y=ax和y=-ax的图象关于对称;函数y=ax和y=-a-x的图象关于对称.6.当a>1时,af(x)>ag(x);当00,且a≠1)的函数叫指数函数.由此可以确定(1)(5)(8)是指数函数.(2)不是指数函数.(3)是-1与指数函数4x的积.返回
(4)中底数-40,且a≠1)的定义域是R,所以函数y=af(x)(a>0,且a≠1)与函数f(x)的定义域相同,利用指数函数的单调性求值域.返回
【解析】(1)令x-4≠0,得x≠4.∴定义域为{x|x∈R,且x≠4}.∴≠0,∴2≠1,∴y=2的值域为{y|y>0,且y≠1}.(2)定义域为x∈R.∵|x|≥0,∴y==≥=1,故y=的值域为{y|y≥1}.(3)定义域为R.∵y=4x+2x+1+1=(2x)2+2·2x+1=(2x+1)2,且2x>0,∴y>1.故y=4x+2x+1+1的值域为{y|y>1}.返回
【评析】求与指数函数有关的函数的值域时,要充分考虑并利用指数函数本身的要求,并利用好指数函数的单调性.如第(1)小题切记不能漏掉y>0.(4)令≥0,得≥0,解得x