2.2 对数函数2.2.1 对数与对数运算第1课时 对数课时过关·能力提升基础巩固1.log5b=2化为指数式是( ) A.5b=2B.b5=2C.52=bD.b2=5答案:C2.3b=5化为对数式是( )A.logb3=5B.log35=bC.log5b=3D.log53=b答案:B3.对数lne2的值为( )A.2B.eC.10D.e2答案:A4.已知logx8=3,则x的值为( )A.12B.2 C.3 D.4解析:由题意,得x3=8=23,即x=2.答案:B5.若loga7b=c(a>0,且a≠1,b>0),则有( )A.b=a7cB.b7=acC.b=7acD.b=c7a解析:∵loga7b=c,∴ac=7b.∴(ac)7=(7b)7.∴a7c=b.答案:A6.log23278= . 解析:设log23278=m,则23m=278.又278=323=23-3,∴23m=23-3,∴m=-3,即log23278=-3.答案:-37.已知log2x=3,则x-13= .
解析:∵log2x=3,∴x=23=8,∴x-13=8-13=(23)-13=2-1=12.答案:128.若log31-2x9=0,则x= . 解析:由题意,得1-2x9=1,解得x=-4.答案:-49.21+log23+log3127= . 解析:令log3127=x,∴3x=127=3-3,∴x=-3.∴原式=2·2log23+log3127=2×3-3=3.答案:310.求值:(32)6+log33+log1216.解:设log1216=t,则12t=16,∴2-t=24,∴t=-4.∴原式=263+1-4=1.11.求下列各式中的x.(1)logx27=32;(2)log2x=-23;(3)logx(3+22)=-2;(4)log5(log2x)=0;(5)x=log2719.解:(1)由logx27=32,得x32=27,故x=2723=32=9.(2)由log2x=-23,得2-23=x,故x=1322=322.(3)由logx(3+22)=-2,得3+22=x-2,即x=(3+22)-12=2-1.(4)由log5(log2x)=0,得log2x=1,故x=21=2.(5)由x=log2719,得27x=19,即33x=3-2,
故x=-23.能力提升1.若7x=8,则x等于( )A.87B.log87C.log78D.log7x答案:C2.2-3=18化为对数式为( )A.log182=-3B.log18(-3)=2C.log218=-3D.log2(-3)=18答案:C3.在log(x-2)(5-x)中,实数x的取值范围是( )A.(-∞,2)∪(5,+∞)B.(2,3)∪(3,5)C.(2,5)D.(3,4)解析:由5-x>0,x-2>0,x-2≠1,得2