高中数学:第二章 基本初等函数(1) / 2.2 对数函数 / 2.2.1 对数与对数运算 教案 (新人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.2.1对数与对数运算(一)(一)教学目标1.知识技能:①理解对数的概念,了解对数与指数的关系;②理解和掌握对数的性质;③掌握对数式与指数式的关系.2.过程与方法:通过与指数式的比较,引出对数定义与性质.3.情感、态度、价值观(1)学会对数式与指数式的互化,从而培养学生的类比、分析、归纳能力.(2)通过对数的运算法则的学习,培养学生的严谨的思维品质.(3)在学习过程中培养学生探究的意识.(4)让学生理解平均之间的内在联系,培养分析、解决问题的能力.(二)教学重点、难点(1)重点:对数式与指数式的互化及对数的性质(2)难点:推导对数性质的(三)教学方法启发式启发学生从指数运算的需求中,提出本节的研究对象——对数,从而由指数与对数的关系认识对数,并掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.引导学生在指数式与对数式的互化过程中,加深对于定义的理解,为下一节学习对数的运算性质打好基础.(四)教学过程教学环节教学内容师生互动设计意图提出问题1.提出问题(P72思考题)老师提出问题,学生思考回答.由实际问题引入,激发学生的学习积极性. 中,哪一年的人口数要达到10亿、20亿、30亿……,该如何解决?即:在个式子中,分别等于多少?象上面的式子,已知底数和幂的值,求指数,这就是我们这节课所要学习的对数(引出对数的概念).启发学生从指数运算的需求中,提出本节的研究对象——对数,概念形成合作探究:若1.01x=,则x称作是以1.01为底的的对数.你能否据此给出一个一般性的结论?一般地,如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,其中a叫做对数的底数,N叫做真数.举例:如:,读作2是以4为底,16的对数.,则,读作是以4为底2的对数.合作探究师:适时归纳总结,引出对数的定义并板书.让学生经历从“特殊一一般”,培养学生“合情推理”能力,有利于培养学生的创造能力.概念深化1.对数式与指数式的互化在对数的概念中,要注意:(1)底数的限制>0,且≠1(2)指数式对数式幂底数←→对数底数指数←→对数幂←N→真数掌握指数式与对数式的互化、而且要明确对数运算是指数运算的逆运算.通过本环节的教学,培养学生的用联系的关点观察问题. 说明:对数式可看作一记号,表示底为(>0,且≠1),幂为N的指数工表示方程(>0,且≠1)的解.也可以看作一种运算,即已知底为(>0,且≠1)幂为N,求幂指数的运算.因此,对数式又可看幂运算的逆运算.2.对数的性质:提问:因为>0,≠1时,则由1、0=12、1=如何转化为对数式②负数和零有没有对数?③根据对数的定义,=?(以上三题由学生先独立思考,再个别提问解答)由以上的问题得到①(>0,且≠1)②∵>0,且≠1对任意的力,常记为.恒等式:=N3.两类对数①以10为底的对数称为常用对数,常记为.②以无理数e=2.71828…为底的对数称为自然对数,常记为. 以后解题时,在没有指出对数的底的情况下,都是指常用对数,如100的对数等于2,即.应用举例例1将下列指数式化为对数式,对数式化为指数式:(1)54=625;(2)2-6=;(3)()m=5.73;(4)log16=-4;(5)lg0.01=-2;(6)ln10=2.303.例2:求下列各式中x的值(1)(2)(3)(4)例1分析:进行指数式和对数式的相互转化,关键是要抓住对数与指数幂之间的关系,以及每个量在对应式子中扮演的角色.(生口答,师板书)解:(1)log5625=4;(2)log2=-6;(3)log5.73=m;(4)()-4=16;(5)10-2=0.01;(6)e2.303=10.例2分析:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1)(2)通过这二个例题的解答,巩固所学的指数式与对数式的互化,提高运算能力. 课本P74练习第1,2,3,4题.(3)(4)所以练习(生完成,师组织学生进行课堂评价)解答:1.(1)log28=3;(2)log232=5;(3)log2=-1;(4)log27=-.2.(1)32=9;(2)53=125;(3)2-2=;(4)3-4=.3.(1)设x=log525,则5x=25=52,所以x=2;(2)设x=log2,则2x==2-4,所以x=-4;(3)设x=lg1000,则10x=1000=103,所以x=3;(4)设x=lg0.001,则10x=0.001=10-3,所以x=-3.4.(1)1;(2)0;(3)2;(4)2;(5)3;(6)5. 归纳总结1.对数的定义及其记法;2.对数式和指数式的关系;3.自然对数和常用对数的概念.先让学生回顾反思,然后师生共同总结,完善.巩固本节学习成果,形成知识体系.课后作业作业:2.2第一课时习案学生独立完成巩固新知提升能力备选例题例1将下列指数式与对数式进行互化.(1)(2)(3)(4)【分析】利用ax=Nx=logaN,将(1)(2)化为对数式,(3)(4)化为指数式.【解析】(1)∵,∴x=64(2)∵,∴(3)∵,∴(4)∵logx64=–6,∴x-6=64.【小结】对数的定义是对数形式与指数形式互化的依据,同时,教材的“思考”说明了这一点.在处理对数式与指数式互化问题时,依据对数的定义ab=Nb=logaN进行转换即可.例2求下列各式中的x.(1);(2);(3);【解析】(1)由得=2–2,即. (2)由,得,∴.(3)由log2(log5x)=0得log5x=20=1.∴x=5.【小结】(1)对数式与指数式的互化是求真数、底数的重要手段.(2)第(3)也可用对数性质求解.如(3)题由log2(log5x)=0及对数性质loga1=0.知log5x=1,又log55=1.∴x=5.

10000+的老师在这里下载备课资料