精品资料欢迎下载对数函数和对数运算高兴一刻四十出头的莉莲心脏病突发,被送往医院急救;病情非常糟糕,莉莲感觉自己几乎都已经死了;抢救中,莉莲突然听见了上帝的声音:“不,你不会死的,你仍可以活45年6个月零两天,鼓起士气活下去!”当然,结果是莉莲奇迹般地被救活了;身体复原后,莉莲想到自己仍能活40多年,便没有急着出院,先是修脸,接着是补唇,然后是隆胸,最终是瘦腹,一古脑儿连续做了4个美容手术,然后又叫了专业美发师上门服务,改换了发色、做了个新潮发型,整个儿看起来年轻了十几岁;当最终一个整形手术完成后,莉莲便高兴奋兴地办理了出院手续,没想到在门口却被一辆急速驶过的抢救车撞死了;到了天堂后,莉莲愤怒地质问上帝:“既然你说过我仍可以活45年,那么你就不应当食言;”上帝尴尬地耸了耸肩,答道:“真是对不起,当时,车子撞你时我没认出是你;”一、学问点回忆假如a>0,a1,M>0,N>0有:logalogaMlogaN〔1〕〔MN〕MlogalogaMlogaN〔2〕NnlogaMnlogaM〔n〔3〕R〕公式:logNalogbNlogabxlogNx证明:设b,就bN,两边取以a为底的对数,得logaNlogNlogaNxbxlogablogaNlogab,即logab;重要推论nn求证:(1)(2)logmblogblogablogba1aam
精品资料欢迎下载二、专题讲解题型一对数式的化简与运算【例1】运算以下各题:lg2+lg5-lg8〔1〕;lg50-lg40〔2〕22〔3〕2〔lg2〕+lg2·lg5+〔lg2〕-lg2+1.【方法归纳】〔1〕在对数运算中,先利用幂的运算把底数或真数进行变形,化成分数指数幂的形式,使幂的底数最简,然后再运用对数运算法就化简合并,在运算中要留意化同底和指数与对数互化;〔2〕娴熟地运用对数的三个运算性质并配以代数式的恒等变形是对数运算、化简、证明常用的技巧.【变式训练2】设函数f2〔x〕=logax〔a>0,且a≠1,〕如f〔x1x22x2011〕=8,就f〔x〕+f〔x〕++f〔x〕122011的值等于〔〕A.4B.8C.16D.2loga8题型二对数函数性质的应用【例2】设函数f〔x〕=loga〔x-2〕〔a>0,且a≠1〕.〔1〕求函数f〔x〕经过的定点坐标;〔2〕争论函数f〔x〕的单调性;〔3〕解不等式:log3〔x-2〕<1.【方法归纳】争论与对数函数有关的复合函数的单调性,第一求出其定义域,然后在定义域内根据复合函数单调性法就确定其单调性.当对数的底数a不确定时,仍要争论a>1和0<a<1两种情形.2【变式训练】对于函数f〔x〕=〔x-2ax+3〕,解答以下问题:log12〔1〕如f〔x〕的定义域为R,求实数a的取值范畴;〔2〕如函数f〔x〕在〔-∞,1]内为增函数,求实数a的取值范畴.
精品资料欢迎下载题型三对数函数的综合应用【例3】已知函数f〔x〕=loga〔3-ax〕〔a>0,且a≠1〕.〔1〕当x∈[0,2]时,函数f〔x〕恒有意义,求实数a的取值范畴;〔2〕是否存在这样的实数a,使得函数f〔x〕在区间[1,2]上为减函数,并且最大值为1?假如存在,试求出a的值;假如不存在,请说明理由.【方法归纳】这是一道探究性问题,留意函数、方程、不等式之间的相互转化.存在性问题的处理,一般是先假设存在,再结合已知条件进行转化求解,如推出冲突,就不存在,反之,存在性成立.2【变式训练】已知f〔x〕=loga〔ax-x〕〔a>0,且a≠1〕在区间[2,4]上是增函数,求实数a的取值范畴.三、巩固练习log3.4log3.61log0.32431、已知a=5,b=5,c=〔〕,就〔〕5A.a>b>cB.b>a>cC.a>c>bD.c>a>b22、设直线x=t与函数f〔x〕=x,g〔x〕=lnx的图象分别交于点M,N,就当|MN|达到最小时t的值为〔〕152A.1B.C.D.222四、拓展训练:xx已知函数f〔x〕=a·2+b·3,其中常数a,b满意ab≠0.〔1〕如ab>0,判定函数f〔x〕的单调性;〔2〕如ab<0,求f〔x+1〕>f〔x〕时的x的取值范畴.
精品资料欢迎下载五、反思总结:b1.bN=a,a=N,logaN=b〔其中N>0,a>0,a≠同一数量关系的三种不同表示形式,1是〕因此在很多问题中需要娴熟进行它们之间的相互转化,挑选最好的形式进行运算.在运算中,根式经常化为指数式比较便利,而对数式一般应化为同底.2.处理指数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.3.含有参数的指数函数的争论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.4.含有指数的较复杂的函数问题大多数都以综合形式显现,与其它函数〔特殊是二次函数〕形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要留意学问的相互渗透或综合.5.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.6.对数函数值的变化特点是解决含对数式问题时使用频繁的关键学问,要达到娴熟、运用自如的水平,使用经经常要结合对数的特殊值共同分析.7.含有参数的指对数函数的争论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类.8.含有指数、对数的较复杂的函数问题大多数都以综合形式显现,与其它函数〔特殊是二次函数〕形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意学问的相互渗透或综合.当堂过手训练(快练五分钟,稳准建奇功)
精品资料欢迎下载对数与对数的运算一、挑选题log5〔a21、5〕(a≠0)化简得结果是()2A、-aB、aC、|a|D、a12、log27[log3(log2x)]=0,就x等于()11A、B、C、11D、32322333、log(n+1-n)等于()n1nA、1B、-1C、2D、-2a4、已知32,那么log382log36用a表示是()22A、a2B、5a2C、3a〔1D、3aaa〕M5、2log2N〕logMlogN,就的值为()〔MaaaN1A、B、4C、1D、4或146、如logm91B、n>m>1C、0