2019-2020年高中数学2.2.1对数与对数运算练习新人教A版必修1一、复习提问评讲作业,P70第12题设=,=,其中a>0,且a≠1,确定x何值时,有:(1)=;(2)>; 分析:第(2)问中要分类讨论,分0〈a〈1和a>1两种情况讨论。当0〈a〈1时,由>,有3x+1<-2x当a>1时,由>,有3x+1>-2x二、新课 例8、截止到xx年底,我国人口约13亿,如果今后能将人口年平均增长率控制在1%,那么经过20年后,我国人口数最多为多少(精确到亿)? 解:设今后人口年平均增长率为1%,经过x年后,我国人口数为y亿。xx年底,我国人口数为13亿,经过1年(xx年),人口数:13+13×1%=13(1+1%)(亿)经过2年(xx年),人口数:13(1+1%)+13(1+1%)×1%=13(1+1%)2(亿)经过3年(xx年),人口数:13(1+1%)2+13(1+1%)2×1%=13(1+1%)3经过x年后,人口数为:y=13(1+1%)x=13×1.01x(亿)当x=20时,y=13×1.0120≈16(亿)所以,经过20年后,我国人口数最多为16亿。 在实际问题中,经常会遇到类似例8的指数增长模型,设原有量为N,平均增长率为p,则对于经过时间x后的总量为y可以用y=N(1+p)x表示。 形如y=kax(k∈R,a>0,a≠1)的函数称为指数型函数,这是非常有用的函数模型。
探究:P68 如果人口年均增长率提高1个百分点,利用计算器分别计算20年、33年后我国的人口数。 你的如何看待我国的计划生育政策的?练习:P68作业:P69 6、9、10、11