2.3《幂函数》2017
加入VIP免费下载

2.3《幂函数》2017

ID:1210778

大小:2.96 MB

页数:42页

时间:2022-08-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
§2.3幂函数第二章基本初等函数(Ⅰ) (1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付P=______w元(2)如果正方形的边长为a,那么正方形的面积S=____(3)如果立方体的边长为a,那么立方体的体积V=____(5)如果某人ts内骑车行进1km,那么他骑车的平均速度v=______________是____的函数a²a³V是a的函数t⁻¹km/sv是t的函数我们先来看几个具体的问题:(4)如果一个正方形场地的面积为S,那么正方形的边长_________a是S的函数以上问题中的函数具有什么共同特征?思考:Pwy=xy=x2y=x3y=xy=x-1____是____的函数Sa 他们有以下共同特点:(1)都是函数;(3)均是以自变量为底的幂;(2)指数为常数. 一般地,函数叫做幂函数(powerfunction),其中x为自变量, 为常数。[定义:]问题:你能说出幂函数与指数函数的区别吗?注意:幂函数的解析式必须是y=xK的形式,         其特征可归纳为“两个系数为1,只有1项”.指数函数:解析式,底数为常数a,a>0,a≠1,指数为自变量x;幂函数:解析式,底数为自变量x,指数为常数α,α∈R; 判断下列函数是否为幂函数.(1)y=x4(3)y=-x2(5)y=2x2(6)y=x3+2判一判 下面研究幂函数在同一平面直角坐标系内作出这六个幂函数的图象.结合图象,研究性质:定义域、值域、单调性、奇偶性、过定点的情况等。研究y=x x…-3-2-10123……-3-2-10123……9410149……-27-8-101827……\\\01……-1/3-1/2-1\11/21/3…y=x x-3-2-10123y=x29410149 x-3-2-10123y=x3-27-8-101827 x0124012 x-3-2-1123-1/3-1/2-111/21/3 在第一象限内,函数图象的变化趋势与指数有什么关系?在第一象限内,当k>0时,图象随x增大而上升。当k0时,图象随x增大而上升。当k0时,图象还都过点(0,0)点 y=xy=x2y=x3y=xy=x-1定义域值域奇偶性单调性公共点奇偶奇非奇非偶奇(1,1)RRR{x|x≠0}[0,+∞)RR{y|y≠0}[0,+∞)[0,+∞)在R上增在(-∞,0)上减,观察幂函数图象,将你发现的结论写在下表:在R上增在[0,+∞)上增,在(-∞,0]上减,在[0,+∞)上增,在(0,+∞)上减 (1)所有的幂函数在(0,+∞)都有定义,并且图象都通过点(1,1);(2)如果α>0,则幂函数图象过原点,并且在区间[0,+∞)上是增函数;(3)如果α<0,则幂函数图象在区间(0,+∞)上是减函数,在第一象限内,当x从右边趋向于原点时,图象在y轴右方无限地逼近y轴,当x趋向于+∞时,图象在y轴上方无限地逼近x轴;(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.幂函数的性质 说一说判断正误1.函数f(x)=x+为奇函数.2.函数f(x)=x2,x[-1,1)为偶函数.3.函数y=f(x)在定义域R上是奇函数,且在(-,0]上是递增的,则f(x)在[0,+)上也是递增的.4.函数y=f(x)在定义域R上是偶函数,且在(-,0]上是递减的,则f(x)在[0,+)上也是递减的. 思考知识点三 一般幂函数的图象特征类比y=x3的图象和性质,研究y=x5的图象与性质.答案答案y=x3与y=x5的定义域、值域、单调性、奇偶性完全相同.只不过当00时,幂函数的图象通过,并且在区间[0,+∞)上是函数.特别地,当α>1时,幂函数的图象;当0cC.b>c>aD.c>b>a类型三 幂函数性质的综合应用答案解析 此类题在构建函数模型时要注意幂函数的特点:指数不变.比较大小的问题主要是利用函数的单调性,特别是要善于应用“搭桥”法进行分组,常数0和1是常用的中间量.反思与感悟 跟踪训练3比较下列各组数中两个数的大小:解答解∵0

10000+的老师在这里下载备课资料