高中数学人教A版必修1 第二章 基本初等函数 2.3 幂函数 导学案
加入VIP免费下载

高中数学人教A版必修1 第二章 基本初等函数 2.3 幂函数 导学案

ID:1210924

大小:565.5 KB

页数:9页

时间:2022-08-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
2.3幂函数班级:__________姓名:__________设计人__________日期__________课前预习·预习案【温馨寄语】你是花季的蓓蕾,你是展翅的雄鹰,明天是你们的世界,一切因你们而光辉【学习目标】1.能熟练利用幂函数的图象和性质解决相关的综合问题.2.结合函数,,,,的图象,了解它们的变化情况.3.通过实例了解幂函数的概念.【学习重点】幂函数的图像和性质【学习难点】幂函数的图像和性质【自主学习】1.幂函数的概念(1)解析式为:                 (其中为常数).(2)自变量是:                 .2.常见的五种幂函数的图象与性质幂函数 图象定义域__________________________________________________值域__________________________________________________奇偶性__________________________________________________单调性__________________________________________________过定点____________________________【预习评价】1.下列函数中不是幂函数的是A.         B.         C.        D.2.幂函数是二次函数,则A.1         B.4         C.2        D.33.已知,,则             .4.幂函数的定义域为          ,其奇偶性是           .5.幂函数在(0,+∞)上是减函数,则的取值范围是            .知识拓展·探究案【合作探究】1.幂函数的解析式 根据幂函数的解析式,完成下列填空,并明确其具有的三个结构特征: (1)特征1:自变量在        位置,且只能是而不能为关于的代数式.(2)特征2:指数位置为         ,不含变量.(3)特征3:的系数是          .2.幂函数的图象和性质 根据幂函数为常数)的解析式及当到不同范围内值时在第一象限的图象的特征,思考下列问题:(1)观察上面的图象,①当时图象都经过定点           ,          .②当时,图象经过定点               .(2)观察上面的幂函数图象,分析幂函数在区间(0,+∞)上为增函数时,满足的条件是什么?在区间(0,+∞)上为减函数时,满足的条件是什么?3.幂函数的图象和性质 幂函数中,令(其中,).讨论,的取值是如何影响函数的奇偶性的?【教师点拨】1.对幂函数解析式的说明(1)定义中所说的形如为常数)的形式一般来说是不可改变的,否则就不是幂函数. (2)解析式中的指数是常数.2.对幂函数图象与性质的三点说明(1)定点:所有幂函数的图象均过定点(1,1).(2)单调性:当时,在区间(0,+∞)上是增函数;当时,在区间(0,+∞)上是减函数.(3)图象特征:当时在区间(0,+∞)上增加得越来越快;当时在区间(0,+∞)上增加得比较缓慢.【交流展示】1.在,,,四个函数中,幂函数有A.1个B.2个C.3个D.4个2.已知是幂函数,求,的值.3.如图所示的曲线是幂函数的第一象限的图象,已知,相应于曲线,,,的值依次为A.B.C.D. 4.已知幂函数的图象过点,试求出该函数的定义域、单调区间、奇偶性.5.若 ,则的取值范围是A.B.C.D.6.把,,,,按从小到大的顺序排列                        .【学习小结】1.幂函数的判断方法(1)看形式:判断一个函数是否是幂函数,关键看解析式是否符合为常数)这一结构形式.(2)明特征:幂函数的解析式具有三个特征,只要有一个特征不具备,则不是幂函数.2.求幂函数解析式的依据及常用方法(1)依据:若一个函数为幂函数,则该函数应具备幂函数解析式所具备的特征,这是解决与幂函数有关问题的隐含条件.(2)常用方法:设幂函数解析式为,根据条件求出.3.幂函数图象的画法(1)确定幂函数在第一象限内的图象:先根据的取值,确定幂函数在第一象限内的图象.(2)确定幂函数在其他象限内的图象:根据幂函数的定义域及奇偶性确定幂函数在其他象限内的图象.4.求幂函数中含参数问题的三个步骤 【当堂检测】1.已知函数为幂函数,求其解析式.2.比较下列各组数中两个数的大小:(1)与.(2)与.(3)与. 答案课前预习·预习案【自主学习】1.(1)y=xa (2)x2.R R R [0,+∞) (-∞,0)∪(0,+∞) R [0,+∞) R [0,+∞){y|y∈R且y≠0} 奇 偶 奇非奇非偶 奇 增 x∈[0,+∞)增,x∈(-∞,0)减 增 增 x∈(0,+∞)减,x∈R(-∞,0)减 (1,1)【预习评价】1.D2.B3.-14.(0,+∞) 非奇非偶函数5.a>2知识拓展·探究案【合作探究】1.(1)底数 (2)常数α (3)12.(1)①(0,0) (1,1) ②(1,1)(2)当α>0时,y=xa在(0,+∞)上为增函数.当α<0时,y=xa在(0,+∞)上为减函数.3.当p,q都为奇数时,幂函数y=xa(α为常数)为奇函数;当p为奇数,q为偶数时,幂函数y=xa(α为常数)为偶函数.【交流展示】1.B 2.由题意得解得所以m=-3,.3.B4.因为,所以,即,所以.由,得x≠0,所以f(x)的定义域为(-∞,0)∪(0,+∞).又因为,所以f(x)是偶函数.因为,f(x)在(0,+∞)上是减函数,又f(x)为偶函数,所以f(x)在(-∞,0)上是增函数.故f(x)的单调减区间为(0,+∞),增区间务(-∞,0).5.C6.【当堂检测】1.因为为幂函数,所以m2-3m+3=1, 解得m=1或m=2.当m=1时,幂函数解析式为;当m=2时,幂函数解析式为.2.(1)因为幂函数y=x0.5在(0,+∞)上是单调递增的,又,所以.(2)因为幂函数y=x-1在(-∞,0)上是单调递减的,又,所以.(3)因为函数力为减函数,又,所以,又因为函数在(0,+∞)上是增函数,且,所以,所以.

10000+的老师在这里下载备课资料