§2.3 二次函数与幂函数考纲解读考点内容解读要求高考示例常考题型预测热度1.二次函数1.了解二次函数的图象与性质2.结合二次函数的图象,求二次函数的最值、单调区间3.掌握三个“二次”之间的关系Ⅲ2017北京,11;2017浙江,5;2016浙江,6;2015福建,16选择题、填空题、解答题★★★2.幂函数[]了解幂函数的概念,结合函数y=x,y=x2,y=x3,y=,y=的图象,了解它们的变化情况Ⅰ2016课标全国Ⅲ,7★★☆分析解读本节重点考查二次函数、一元二次方程及二次不等式的综合应用以及幂函数的图象及性质,重点考查等价转化和数形结合的思想.以二次函数为载体,解决二次函数的单调区间、二次函数在给定的闭区间上的最值以及有关参数的取值范围问题,关键是抓住函数图象的对称轴;幂函数问题主要是考查幂函数在第一象限内的图象及性质.本节内容在高考中分值为5分左右,属于中档题.五年高考考点一 二次函数1.(2016浙江,6,5分)已知函数f(x)=x2+bx,则“b0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于______.答案 96.(2015浙江,20,15分)设函数f(x)=x2+ax+b(a,b∈R).(1)当b=+1时,求函数f(x)在[-1,1]上的最小值g(a)的表达式;(2)已知函数f(x)在[-1,1]上存在零点,0≤b-2a≤1,求b的取值范围.解析 (1)当b=+1时,f(x)=+1,故对称轴为直线x=-.当a≤-2时,g(a)=f(1)=+a+2.当-22时,g(a)=f(-1)=-a+2.
综上,g(a)=(2)设s,t为方程f(x)=0的解,且-1≤t≤1,则由于0≤b-2a≤1,因此≤s≤(-1≤t≤1).当0≤t≤1时,≤st≤,由于-≤≤0和-≤≤9-4,所以-≤b≤9-4.当-1≤t0,所以h(x)在区间(a,+∞)上单调递增.因为h(1)=4>0,h(2a)=2a+>0,1)若a=2,则h(a)=-a2+a+=-4+2+2=0,此时h(x)在(0,+∞)上有唯一一个零点;
2)若a>2,则h(a)=-a2+a+=-=-2时,f(x)+在区间(0,+∞)内有两个零点.考点二 幂函数(2016课标全国Ⅲ,7,5分)已知a=,b=,c=2,则( )A.b