教材分析教学目标《募函数》教学设计《暴函数》在老教材中出现过,后来乂删,现在乂里新出现,当然两次在教材中的地位不一样,这次分量较轻,只要一课时,所以控制难度是值得注意的地方口界函数选自必修1第3章第4节,是基本初等函数之一,是在学生系统学习了函数概念与函数性质之后,进入高中以来遇到的第三种特殊函数,是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域,值域、图像、奇偶性、单调性、渐近线)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升口从概念到图象11(y=y=x~ty=y=x2+y=S*y=工一:利用这七y=x-3)个函数的图象探究其定义域,值域、奇偶性、单调性、定点”图象范围、渐近性,概括、归纳毒函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解募函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。从知识体系看,本节课的学习有承上启下的作用,前而有指数函数与对数函数的学习,后面有其他函数的研究:就知识特点而言,蕴含丰富的数学思想:就能力培养来说,通过学生对帚函数性质的归纳,可培养学生类比、归纳概括能力以及运用数学语言交流表达的能力口~~依据课程标准,结合学生的认知发展.水平和心理特征,确定本节课的教学目标如下:【知识与技能】1了解幕函数的定义;2会画常见事函数的图象t掌握靠函数的图象和性质:3初步学会运用寤函数解决问题,进一步体会数形结合的思想.【过程与方法】1通过引入、剖析、定义累函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方
法;2通过运用多媒体的教学手段,引领学生主动探索幕函数性质,体会学习数学规律的方法,体验成功的乐趣;3对塞函数的性质归纳、总结时培养学生抽象概括和识图能力;4运用性质解决问题时,进一步强化数形结合思想。【情感态度与价值观】1通过生活实例引出事函数概念,体会生活中处处有数学,激发学生的学习兴趣;2通过本节课的学习,进一步加深研究函数的规律和方法;提高学习能力;3养成积极主动,勇于探索,不断创新的学习习惯和品质;4树立学科学,爱科学,用科学的精神。-L、教学重点与难点教学重点:塞函数的定义、图像、性质及运用。教学难点:幕函数图象和性质的发现过程,数学结合解决大小比较以及求参数问题。四、学情分析从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对刚进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。尤其事函数在三种初等函数中是最难的,因为它分类情况很多,且性质多而复杂,我采用让学生观察计算机上函数图象,从中归纳性质的方法来突破难点。五、教学方法学生思且学生原有的矢交流,共同岑分利用多媒f动思考、动m,活跃,求知欲强,但在思维习惯上还有待教师引导从口识和能力出发,在教师的带领下创设疑问,通过合作求索,逐步解决问题。采用引导发现式的教学方法,充本辅助教学。通过教师点拨,启发学生主动观察、主F操作、自主探究来达到对知识的发现和接受。六、教学过程教学过程与时间分配教学设计与教学内容教学设计意图i.创设情境教师活动:在进入新课之前,我们先来回忆一下第三章中已学内容,请同学回答:学生活动:分数指数幕、指数函数和对数函数。教师活动:那么这些函数在实际生活中够用了吗?下面我们来看几道实际生活中的例子。知识点回顾,揭示函数之间的联系,追求函数的完美、知识体系的完备性。运用4个生活
①边长为x的正方形面积y二?中的例子主③面积为x的正方形边长y二?④边长为x的正方体的体积y二?⑤某人x秒行走1km平均速度y二?学生活动:①X2②4=xl/2③x3④l/x=x-l教师活动:上述四个函数解析式的共同点是什么?攀生活动:底数变,指数定!教师活动:那你能不能从中抽象出函数模型呢?学生活动:y=xa教师活动:按照数学书写规律,指数为常数时一般记作y=x'o引出定义:我们把这类函数称为暴函数。教师活动:①请同学们大声朗读屏幕上塞函数的定义:一般地,形如y=x"的函数称为某函数,其中x是自变量,a是常数。②在黑板上简单写下暴函数定义并解释定义:必须要y=x"的形式才是塞函数,而且这里对a有没有要求?③事函数形式与哪个函数形式类似?区别在哪里呢?学生活动:①齐声朗读事函数定义;②对。没有要求,a可取一切实数;③与指数函数的形式类似,区别在于自变量的位置不同;教师活动:为了不混淆指数函数和幕函数,只要记住自变量在指数上的是指数函数就可以了。要目的是引出三种典型的塞函数,为后面三大类暴函数的归纳总结打下基础。提出日常生活中的问题,学生既容易理^您又可以增加学生学习的兴趣。2.讲解例题衔接:接下来,为了巩固事函数概念,通过两道经2mins我们一起来看两个例题。例一、判断下列函数哪些是暴函数:①y=x典例题讲解,加深对塞函数定义的理^翠,巩
3.探究性质21mins固塞函数概念。函数'性质yXyX2yX3y=1X2y=xiz3y=-9Xy=-3X值教师活动:那我们就通过画几个具有代表性的事函数来探究它的性质。同学们一起来画这个表格:通过之前探究指数、对数函数的类比思想,学生自主探究,培养学生观察、分析]概括能力。既复习回顾函数的定义域、奇偶性的相关知识,乂为学习暴函数的图象奠定基础。预见到学生对抽象的事函数的理解比较困难,所以让学生亲身经历知识的发生发展过程,印②y=x°G)y=2x2④y=2、⑤y=x?-x例二、若函数y=(m2-m-l)x~-2m-3是累函数,则m=?学生活动:①例一中①②是暴函数,其余不是。因为某函数必须是y=X。的形式。②例二中系数m:-m-l=O即m=2或nrT。教师活动:例二中m需要检验吗?学生活动:不需要,因为定义中对指数a无要求。衔接:同学们,学完函数定义之后,接下来要研究函数的什么呢?学生活动:研究函数的图象与性质。教师活动:思考之前学习指数、对数函数时要研究哪些性质?是如何研究的?学生活动:性质有:定义域、值域、奇偶性、单调性、图象范围、过定点和渐近线。通过画图研究。
域奇偶性单调性图象范围过定点渐近线象更加深刻。在归纳总结的过程中,培养学生研究新函数从特殊到一般的类比联想的数学方法;积累学生独立思考与互相合作学习的经验。教师活动:请第四排同学从右到左,每位同学回答一列性质,除图象范围、过定点、渐近线。每当一位学生回答完就用几何画板展示出该函数图象,一方面检验前四个性质是否填写完整,另一方面继续填写性质。学生活动:回答表格问题。教师活动:根据表格中图象范围,同学们能得出什么结论呢?学生活动:幕函数图象总出现在第一象限。教师活动:那我们就先研究第一象限内事函数的性质。至于二、三象限内是否有图像可以根据什么判断出来?学生活动:奇偶性。教师活动:非常好。那请同学们思考并讨论笫一象限内(包括坐标轴)塞函数的性质,比如定点的规律?比如单调性的规律?请看几何画板上的函数图象。学生回答:有定点(L1)和(0,0)。教师活动:将指数为正的幕函数图像隐藏,让学生再次观察函数图象是否是过这两个定点。学生活动:当a>0时,过定点:(1,1)和(0,0);当时,过定点(1,l)o教师活动:这位同学将幕函数定点的规
律总结的很好,那么单调性的规律呢?学生活动:当a>0时,幕函数单调递增;当时.,幕函数单调递减。教师活动:从图象中容易看出这个规律是正确的,很好。再来仔细看一看,递增时上升趋势一样吗?若不一样,可分为几类?学生活动:不一样。当时,上升趋势平缓,开口向右;当时,上升趋势明显,开口向上;当。二1时,是一条平分一三象限的直线。教师活动:将同学总结的幕函数单调性规律和定点规律在图象上呈现出来,如下:练习1安排的目的是检验学生对暴函数图象的理解程度,并巩固塞函数图象的画法。练习2安排的目的是渗教师活动:同学们将幕函数的性质总结地很好,那如果让你动手画一个事函数,你现在会吗?根据哪些性质画?学生活动:①第一步:求出定义域;②第二步:判断奇偶性;③笫三步:根据第一象限内恭函数单调性规律图以及定点规律画出第一象限内图象;④笫四步:补全其他象限内图象。4.巩固练习衔接:接下来为了巩固暴函数的性质,来看几个练习:_5练习1:动手画一画y=x1的图象;练习2:比较下列各组中两数的大小:33(1)L5M和L7)(2)0.7心和0.615
22(3)(一1.2)飞和(-1.5)二25(4)L2§和L2§_i_1练习3:已知(x-3),v(l+2x尸,求X的取值范围。练习4:(例二变题)已知事函数y=(m2-m-l)x。-2nl-3在(0,+8)上是减函数,求此嘉函数解析式。教师活动:通过练习2中比较大小的题目,同学们试着总结一下比较大小问题的做法。学生活动:当底数不变时.,考虑塞函数;当指数不变时,考虑指数函数。透塞函数的性质运用与数形结合的思想方法,运用多种方法,培养学生发散思维。练习3的目的是提高对事函数概念与图象的认识。练习4的目的是进一步加深概念形式理解和性质运用。5.课堂小结教师活动:最后,请同学们思考以下三个问题:(1)这节课我们学习了哪些内容?我们是用什么方法探究的?(2)做题时有哪些注意点?(3)本堂课你对哪个内容还有疑惑?整理、归纳所学知识,完善学生认知结构,明确本节课学习内容。6.课后作业《功到自然成》幕函数第一课时和第二课时。巩固本节课知识。七、板书设计幕函数1.定义3.练习32.图象与性质4.练习4表格八、教学设计说明问题情境化这节课主要教学目标是帮函数的概念和图像,以及塞函数的性质。学生对面函数的概念比较陌生,我采用了从生活实例导入,让学生感受暴函数就在学生身边,从而拉近学生和塞函数的距离,通过问题的解决在特殊方法中蕴含一般规律,使学生自己体会其中的数学思想方法。为进一步学习奠定基石。图象与性质探究活动话。教学中本着以学生发展为本理念,充分给学生思考分析时间讨论,研究和交流展示思维的机会。通过他们自主学习,合作探究展示学生解决问题的思想方法,体会学习成功的喜悦。学生对事函数图像缺乏感性认识,不能够在理解的基础上来运用幕函数的性质,为此在教学过程中让学生自己去感受事函
数的图像和性质是最堂课的突破口。这节课的难点是事函数图像和性质的发现过程。教学重点是暴函数的性质及运用。首先利用三个实例由师生共同归纳总结出塞函数的定义,认清暴函数的特点,深刻理解其定义域,其次举出几个简单的惠函数,引导学生从定义出发,研窕其定义域,值域,奇偶性,单调性,是否过公共点这几个性质,让学生自己去探究,把主动权交给学生。然后再由学生自己结合性质,利用计算机去观察函数的图像,让学生在获得一定的感性认识的基础上,通过归纳比较上升为理性认识,从而形成对概念与性质的完整认识,最后通过例题让学生利用图像与性质比较两个数的大小,从而提高学生获取知识的能力,通过师生之间不断对话,合作,交流,发展学生的数学观察能力和语言表达能力,培养学生的发散思维和严谨性。巩固练习结构梯度化,例题层次分明。练习1是对塞函数图象的理解。练习2是对函数形式考察。练习3是对函数的概念性质和图像的全面考察。练习4是对函数单调性的进一步应用。促进学生主动建构,有助于学生形成知识体系,加强对数学思想方法的感悟。“板书设计人性化,必要的推理和演算过程板书在黑板上,有助于学生的理解与阅读性质的归纳。在中间用不同颜色的笔突出,知识点一目了然,方便学生做笔记。通过塞函数的研究,让学生体会研究一个新函数要经历背景一一基本特征一一形成过程一一基本性质一一应用的过程。学会用类比分析中找到规律。整个教学过程的绝大部分时间都给了学生,让学生动脑动手,培养学生思维的深刻性、敏锐性、广阔性和批判性。同时让学生经历数学知识的形成与应用过程,培养学生自主探索,自主学习的能力。通过对同类旧知识的回忆,有意识地将新知识的学习和研究方法渗透到教学过程之中。通过教学过程的设计将旧知识适当展开重新组合,使知识的传授和能力的培养有机地结合到一起。这些均提高了学生学习的积极性和自学能力,培养了他们的科学精神和创新思维习惯,在此基础上通过民主和谐的课堂氛围,培养学生自主学习,合作交流的学习习惯也培养学生勇于探索,不断创新的思维品质。