2018年秋高中数学第二章基本初等函数ⅰ2.3幂函数课时分层作业21
加入VIP免费下载

2018年秋高中数学第二章基本初等函数ⅰ2.3幂函数课时分层作业21

ID:1211266

大小:60.63 KB

页数:4页

时间:2022-08-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课时分层作业(二十一) 幂函数(建议用时:40分钟)[学业达标练]一、选择题1.已知幂函数f(x)=k·xα的图象过点,则k+α等于(  )【导学号:37102314】A.        B.1C.D.2A [∵幂函数f(x)=kxα(k∈R,α∈R)的图象过点,∴k=1,f=α=,即α=-,∴k+α=.]2.如图233所示,给出4个幂函数的图象,则图象与函数的大致对应是(  )图233A.①y=x,②y=x2,③y=x,④y=x-1B.①y=x3,②y=x2,③y=x,④y=x-1C.①y=x2,②y=x3,③y=x,④y=x-1D.①y=x3,②y=x,③y=x2,④y=x-1B [因为y=x3的定义域为R且为奇函数,故应为图①;y=x2为开口向上的抛物线且顶点为原点,应为图②.同理可得出选项B正确.]3.幂函数的图象过点(3,),则它的单调递增区间是(  )【导学号:37102315】A.[-1,+∞)       B.[0,+∞)C.(-∞,+∞)D.(-∞,0)B [设幂函数为f(x)=xα,因为幂函数的图象过点(3,),所以f(3)=3α==3,解得α=,所以f(x)=x,所以幂函数的单调递增区间为[0,+∞),故选B.]4.设a∈,则使函数y=xa的定义域是R,且为奇函数的所有a的值是(  )A.1,3B.-1,1 C.-1,3D.-1,1,3A [当a=-1时,y=x-1的定义域是{x|x≠0},且为奇函数;当a=1时,函数y=x的定义域是R,且为奇函数;当a=时,函数y=x的定义域是{x|x≥0},且为非奇非偶函数;当a=3时,函数y=x3的定义域是R且为奇函数.故选A.]5.设a=,b=,c=,则a,b,c的大小关系是(  )【导学号:37102316】A.a<b<cB.b<a<cC.c<a<bD.b<c<aB [由于函数y=x在它的定义域R上是减函数,∴a=>b=>0.由于函数y=x在它的定义域R上是增函数,且>,故有c=>a=,故a,b,c的大小关系是b<a<c,故选B.]二、填空题6.已知幂函数f(x)=xm的图象经过点,则f(6)=________. [依题意=()m=3,所以=-1,m=-2,所以f(x)=x-2,所以f(6)=6-2=.]7.若幂函数f(x)=(m2-m-1)x2m-3在(0,+∞)上是减函数,则实数m=________.【导学号:37102317】-1 [∵f(x)=(m2-m-1)x2m-3为幂函数,∴m2-m-1=1,∴m=2或m=-1.当m=2时,f(x)=x,在(0,+∞)上为增函数,不合题意,舍去;当m=-1时,f(x)=x-5,符合题意.综上可知,m=-1.]8.若幂函数f(x)的图象过点,则f(x)的值域为________.(0,+∞) [由题意设f(x)=xm,由点在函数图象上得4m=,解得m=-2,所以f(x)=x-2=,故其值域为(0,+∞).]三、解答题9.已知函数f(x)=(m2+2m)·xm2+m-1,m为何值时,函数f(x)是:(1)正比例函数;(2)反比例函数;(3)幂函数. 【导学号:37102318】[解] (1)若函数f(x)为正比例函数,则∴m=1.(2)若函数f(x)为反比例函数,则∴m=-1.(3)若函数f(x)为幂函数,则m2+2m=1,∴m=-1±.10.已知幂函数y=f(x)经过点.(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间.[解] (1)由题意,得f(2)=2a=,即a=-3,故函数解析式为f(x)=x-3.(2)∵f(x)=x-3=,∴要使函数有意义,则x≠0,即定义域为(-∞,0)∪(0,+∞),关于原点对称.∵f(-x)=(-x)-3=-x-3=-f(x),∴该幂函数为奇函数.当x>0时,根据幂函数的性质可知f(x)=x-3,在(0,+∞)上为减函数,∵函数f(x)是奇函数,∴在(-∞,0)上也为减函数,故其单调减区间为(-∞,0),(0,+∞).[冲A挑战练]1.三个数60.7,0.76,log0.76的大小顺序是(  )【导学号:37102319】A.0.76<60.7<log0.76 B.0.76<log0.76<60.7C.log0.76<60.7<0.76D.log0.76<0.76<60.7D [由指数函数和对数函数的图象可知:60.7>1,0<0.76<1,log0.76<0,∴log0.76<0.76<60.7,故选D.]2.给出幂函数:①f(x)=x;②f(x)=x2;③f(x)=x3;④f(x)=;⑤f(x)=.其中满足条件f>(x1>x2>0)的函数的个数是(  )A.1个B.2个C.3个D.4个A [①函数f(x)=x的图象是一条直线,故当x1>x2>0时,f=;②函数f(x)=x2的图象是凹形曲线,故当x1>x2>0时,fx2>0时,fx2>0时,f>;⑤在第一象限,函数f(x)=的图象是一条凹形曲线,故当x1>x2>0时,fx2>0时,f>.故选A.]3.已知函数f(x)=x在(-∞,0)上是增函数,在(0,+∞)上是减函数,那么最小的正整数α=________.【导学号:37102320】3 [取值验证.α=1时,y=x0,不满足;α=2时,y=x-,在(0,+∞)上是减函数.∵它为奇函数,则在(-∞,0)上也是减函数,不满足;α=3时,y=x-满足题意.]4.已知幂函数f(x)=x,若f(10-2a)

10000+的老师在这里下载备课资料