幂函数
问题引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=元(2)如果正方形的边长为a,那么正方形的面积(3)如果立方体的边长为a,那么立方体的体积(4)如果一个正方形场地的面积为S,那么这个正方形的边长(5)如果人ts内骑车行进了1km,那么他骑车的平均速度我们先看几个具体问题:w
一般地,函数叫做幂函数(powerfunction),其中x为自变量, 为常数。幂函数的定义:注意:(1)幂函数的解析式必须是的形式,前的系数必须是1,没有其它项。(2)定义域与的值有关系.
式子名称常数xy指数函数:y=ax(a>0且a≠1)幂函数:y=xαa为底数指数α为指数底数幂值幂值判断一个函数是幂函数还是指数函数切入点看未知数x是指数还是底数幂函数指数函数幂函数与指数函数的对比:
(指数函数)(幂函数)(指数函数)(幂函数)快速反应(指数函数)(幂函数)
幂函数的图象及性质对于幂函数,我们只讨论=1,2,3,,-1时的情形。五个常用幂函数的图像和性质(1)(2)(3)(4)(5)
定义域:值域:奇偶性:单调性:函数的图像
定义域:值域:奇偶性:单调性:函数的图像
定义域:值域:奇偶性:单调性:函数的图像
x…-2-101234…y=x3……y=x1/2……-8-101827010xy1234-1-2-32468-2-4-6-8y=x3//64y=x2
定义域:值域:奇偶性:单调性:函数的图像
定义域:值域:奇偶性:单调性:函数的图像
幂函数的定义域、值域、奇偶性和单调性,随常数α取值的不同而不同.y=x3定义域值域单调性公共点y=xRRR[0,+∞)R[0,+∞)R[0,+∞)奇函数偶函数奇函数非奇非偶函数奇函数在R上是增函数在(-∞,0]上是减函数,在(0,+∞)上是增函数在R上是增函数在(0,+∞)上是增函数在(-∞,0),(0,+∞)上是减函数(1,1)奇偶性y=x2
4321-1-2-3-4-2246(1,1)(2,4)(-2,4)(-1,1)(-1,-1)y=x
2、在第一象限内,α>0,在(0,+∞)上为增函数;α