§2.3幂函数
学习目标1、通过实例,了解幂函数的概念.2、通过具体实例研究幂函数的图象和性质.3、掌握幂函数的简单应用.
问题引入(1)如果张红购买了每千克1元的蔬菜w千克,那么她需要支付p=w元,这里p是w的函数;(2)如果正方形的边长为a,那么正方形的面积,这里S是a的函数;(3)如果立方体的边长为a,那么立方体的体积,这里V是a函数;(4)如果一个正方形场地的面积为S,那么这个正方形的边长这里a是S的函数;(5)如果人ts内骑车行进了1km,那么他骑车的平均速度这里v是t的函数.我们先看几个具体问题:若将它们的自变量全部用x来表示,函数值用y来表示,则它们的函数关系式将是:
定义几点说明:
式子名称axy指数函数:y=ax幂函数:y=xa底数指数指数底数幂值幂值幂函数与指数函数的对比判断一个函数是幂函数还是指数函数切入点看看未知数x是指数还是底数幂函数指数函数
例1:判断下列函数是否为幂函数.(1)y=x4(3)y=-x2(5)y=2x2(6)y=x3+2
P77练习这个是幂函数这个是幂函数图象
几个幂函数的性质:定义域值域奇偶性单调性公共点RR奇函数增函数(0,0),(1,1)R偶函数(0,0),(1,1)RR奇函数增函数(0,0),(1,1)非奇非偶增函数(0,0),(1,1)奇函数(1,1)
一般幂函数的性质:★所有的幂函数在(0,+∞)都有定义,并且函数图象都通过点(1,1).★如果α>0,则幂函数的图象过点(0,0),(1,1)并在(0,+∞)上为增函数.★如果α10