幂函数中档题(含答案)
加入VIP免费下载

幂函数中档题(含答案)

ID:1211648

大小:295.24 KB

页数:16页

时间:2022-08-10

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
实用文档3.3幂函数中档题 一.选择题(共4小题)1.若幂函数f(x)的图象经过点(3,),则函数g(x)=+f(x)在[,3]上的值域为(  )A.[2,]B.[2,]C.(0,]D.[0,+∞)2.已知指数函数f(x)=ax﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是(  )A.B.C.D.3.函数f(x)=(m2﹣m﹣1)x是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值(  )A.恒大于0B.恒小于0C.等于0D.无法判断4.已知,若0<a<b<1,则下列各式中正确的是(  )A.B.C.D. 二.填空题(共1小题)标准文案 实用文档5.已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是  . 三.解答题(共13小题)6.已知幂函数f(x)=(m﹣1)2x在(0,+∞)上单调递增,函数g(x)=2x﹣k.(Ⅰ)求m的值;(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.7.已知函数f(x)=(a﹣1)xa(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a++的取值范围.8.已知函数f(x)=(a﹣1)xa(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求的取值范围.9..已知幂函数的图象关于y轴对称,且在区间(0,+∞)上是减函数,(1)求函数f(x)的解析式;(2)若a>k,比较(lna)0.7与(lna)0.6的大小.10.已知幂函数g(x)=(m2﹣2)xm(m∈R)在(0,+∞)为减函数,已知f(x)是对数函数且f(﹣m+1)+f(﹣m﹣1)=.(1)求g(x),f(x)的解析式;(2)若实数a满足f(2a﹣1)<f(5﹣a),求实数a的取值范围.11.函数f(x)=是偶函数.(1)试确定a的值,及此时的函数解析式;(2)证明函数f(x)在区间(﹣∞,0)上是减函数;(3)当x∈[﹣2,0]时,求函数f(x)=的值域.12.如图,点A、B、C都在幂函数的图象上,它们的横坐标分别是a、a+1、a+2又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a)标准文案 实用文档(1)求函数f(a)和g(a)的表达式;(2)比较f(a)与g(a)的大小,并证明你的结论13.已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.14.已知幂函数y=f(x)经过点,(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间;(3)试解关于x的不等式f(3x+2)+f(2x﹣4)>0.15.已知幂函数f(x)=xa和对数函数g(x)=logax,其中a为不等于1的正数(1)若幂函数的图象过点(27,3),求常数a的值,并说明幂函数f(x)的单调性;(2)若0<a<1,且函数y=g(x+3)在区间[﹣2,﹣1]上总有|y|≤2,求a的取值范围.16.已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).17.已知函数f(x)=(m﹣1)为幂函数,g(x)=x+f(x).(1)求证:函数g(x)是奇函数;(2)根据函数单调性定义证明:函数g(x)在[2,+∞)上是增函数.18.已知幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围. 标准文案 实用文档3.3幂函数中档题参考答案与试题解析 一.选择题(共4小题)1.(2015•吉安一模)若幂函数f(x)的图象经过点(3,),则函数g(x)=+f(x)在[,3]上的值域为(  )A.[2,]B.[2,]C.(0,]D.[0,+∞)【分析】根据幂函数f(x)的图象过点(3,),求出f(x)的解析式,再求出g(x)的解析式,计算g(x)在x∈[,3]上的最值即可.【解答】解:设f(x)=xα,∵f(x)的图象过点(3,),∴3α=,解得α=﹣,∴f(x)=;∴函数g(x)=+f(x)=+=+,当x∈[,3]时,在x=1时,g(x)取得最小值g(1)=2,在x=3时,g(x)取得最大值g(3)=+=,∴函数g(x)在x∈[,3]上的值域是[2,].故选:A.【点评】本题考查了用待定系数法求幂函数的解析式的应用问题,也考查了基本不等式的应用问题以及求函数的值域的应用问题,是基础题目. 2.(2015秋•庄河市期末)已知指数函数f(x)=ax﹣16+7(a>0且a≠1)的图象恒过定点P,若定点P在幂函数g(x)的图象上,则幂函数g(x)的图象是(  )标准文案 实用文档A.B.C.D.【分析】求出定点P,然后求解幂函数的解析式,即可得出结论.【解答】解:指数函数f(x)=ax﹣16+7(a>0且a≠1)的图象恒过定点P,令x﹣16=0,解得x=16,且f(16)=1+7=8,所以f(x)的图象恒过定点P(16,8);设幂函数g(x)=xa,P在幂函数g(x)的图象上,可得:16a=8,解得a=;所以g(x)=,幂函数g(x)的图象是A.故选:A.【点评】本题考查了指数函数与幂函数的性质与应用问题,也考查了计算能力的问题,是基础题. 3.(2015秋•九江校级期中)函数f(x)=(m2﹣m﹣1)x是幂函数,对任意x1,x2∈(0,+∞),且x1≠x2,满足>0,若a,b∈R,且a+b>0,ab<0,则f(a)+f(b)的值(  )A.恒大于0B.恒小于0C.等于0D.无法判断【分析】根据题意,求出幂函数f(x)的解析式,利用函数f(x)的奇偶性与单调性,求出f(a)+f(b)>0.【解答】解:根据题意,得f(x)=(m2﹣m﹣1)x是幂函数,∴m2﹣m﹣1=1,解得m=2或m=﹣1;标准文案 实用文档又f(x)在第一象限是增函数,且当m=2时,指数4×29﹣25﹣1=2015>0,满足题意;当m=﹣1时,指数4×(﹣1)9﹣(﹣1)5﹣1=﹣4<0,不满足题意;∴幂函数f(x)=x2015是定义域R上的奇函数,且是增函数;又∵a,b∈R,且a+b>0,∴a>﹣b,又ab<0,不妨设b<0,即a>﹣b>0,∴f(a)>f(﹣b)>0,f(﹣b)=﹣f(b),∴f(a)>﹣f(b),∴f(a)+f(b)>0.故选:A.【点评】本题考查了幂函数的定义与性质的应用问题,也考查了函数的奇偶性与单调性的应用问题,是基础题目. 4.(2014•西湖区校级学业考试)已知,若0<a<b<1,则下列各式中正确的是(  )A.B.C.D.【分析】函数的单调性,对a、b、、,区分大小,即可找出选项.【解答】解:因为函数在(0,+∞)上是增函数,又,故选C.【点评】本题考查幂函数的性质,数值大小比较,是基础题. 二.填空题(共1小题)5.(2016春•厦门校级期末)已知幂函数f(x)的图象经过点(,),P(x1,y1),Q(x2,y2)(x1<x2)是函数图象上的任意不同两点,给出以下结论:①x1f(x1)>x2f(x2);②x1f(x1)<x2f(x2);③>;④<.其中正确结论的序号是 ②③ .【分析】利用待定系数法求出幂函数的解析式;幂函数的指数大于0得到幂函数在(0,+∝)上的单调性;图象呈上升趋势,判断出②③正确.【解答】解:依题意,设f(x)=xα,则有()α=,即()α=(),所以α=,于是f(x)=x.标准文案 实用文档由于函数f(x)=x在定义域[0,+∞)内单调递增,所以当x1<x2时,必有f(x1)<f(x2),从而有x1f(x1)<x2f(x2),故②正确;又因为,分别表示直线OP、OQ的斜率,结合函数图象,容易得出直线OP的斜率大于直线OQ的斜率,故>,所以③正确.答案②③【点评】本题考查利用待定系数法求幂函数的解析式、考查幂函数的性质由幂函数的指数的取值决定. 三.解答题(共13小题)6.(2016春•宜春校级期末)已知幂函数f(x)=(m﹣1)2x在(0,+∞)上单调递增,函数g(x)=2x﹣k.(Ⅰ)求m的值;(Ⅱ)当x∈[1,2]时,记f(x),g(x)的值域分别为集合A,B,若A∪B=A,求实数k的取值范围.【分析】(Ⅰ)根据幂函数的定义和性质即可求出m的值,(Ⅱ)先求出f(x),g(x)的值域,再根据若A∪B⊆A,得到关于k的不等式组,解的即可.【解答】解:(Ⅰ)依题意得:(m﹣1)2=1,解得m=0或m=2当m=2时,f(x)=x﹣2在(0,+∞)上单调递减,与题设矛盾,舍去∴m=0.(Ⅱ)由(Ⅰ)知f(x)=x2,当x∈[1,2]时,f(x),g(x)单调递增,∴A=[1,4],B=[2﹣k,4﹣k],∵A∪B⊆A,∴解得,0≤k≤1故实数K的取值范围为[0,1]【点评】本题主要考查了幂函数的性质定义,以及集合的运算,属于基础题. 7.(2016春•江阴市校级期中)已知函数f(x)=(a﹣1)xa(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值并求其单调递减区间;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求a++的取值范围.【分析】(Ⅰ)根据幂函数的定义,求出a的值,即得f(x)的解析式与单调递减区间;标准文案 实用文档(Ⅱ)把方程化为g(x﹣1)=1﹣a,利用函数y=g(x﹣1)与y=1﹣a在x∈(1,3)的图象上有二交点,得出a的取值范围以及x1,x2的关系,从而求出a++的取值范围.【解答】解:(Ⅰ)∵f(x)=(a﹣1)xa(a∈R),f(x)是幂函数,∴由题有a﹣1=1,得a=2;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣2’∴f(x)=x2的单调递减区间为(﹣∞,0)﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣4’(Ⅱ)方程g(x﹣1)+f(1)=0化为g(x﹣1)=1﹣a,由题意函数y=g(x﹣1)与y=1﹣a在x∈(1,3)上有两不同交点.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣5’y=g(x﹣1)=|lg(x﹣1)|=;﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣7’在x∈(1,2]时,y=g(x﹣1)单调递减,又y=g(x﹣1)∈[0,+∞),在x∈[2,3)时,y=g(x﹣1)单调递增,y=g(x﹣1)∈[0,lg2),﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣9’所以0<1﹣a<lg2,即1﹣lg2<a<1,﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣11’由x1<x2,可知x1∈(1,2),x2∈(2,3),且即相加消去a,可得lg(x1﹣1)+lg(x2﹣1)=0,即(x1﹣1)(x2﹣1)=1,展开并整理得x1x2=x1+x2,即+=1.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣14’所以a++的取值范围为(2﹣lg2,2).﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣16’【点评】本题考查了幂函数的定义与性质的应用问题,也考查了函数与方程的应用问题以及分类讨论与转化思想,是就综合性题目. 8.(2015秋•资阳期末)已知函数f(x)=(a﹣1)xa(a∈R),g(x)=|lgx|.(Ⅰ)若f(x)是幂函数,求a的值;(Ⅱ)关于x的方程g(x﹣1)+f(1)=0在区间(1,3)上有两不同实根x1,x2(x1<x2),求的取值范围.【分析】(Ⅰ)利用幂函数的定义能求出a.(Ⅱ)函数y=g(x﹣1)与y=1﹣a在x∈(1,3)上有两不同交点,y=g(x﹣1)=,推导出1﹣lg2<a<1,x1∈(1,2),x2∈(2,3),由此能求出的取值范围.标准文案 实用文档【解答】解:(Ⅰ)∵f(x)=(a﹣1)xa(a∈R),f(x)是幂函数,∴由题有a﹣1=1,得a=2.(2分)(Ⅱ)方程化为g(x﹣1)=1﹣a,由题有函数y=g(x﹣1)与y=1﹣a在x∈(1,3)上有两不同交点.(3分)y=g(x﹣1)=|lg(x﹣1)|=在x∈(1,2]时,y=g(x﹣1)单调递减,y=g(x﹣1)∈[0,+∞),在x∈[2,3)时,y=g(x﹣1)单调递增,y=g(x﹣1)∈[0,lg2),5分所以0<1﹣a<lg2,即1﹣lg2<a<1,(7分)由x1<x2,可知x1∈(1,2),x2∈(2,3),且即相加消去a,可得lg(x1﹣1)+lg(x2﹣1)=0,即(x1﹣1)(x2﹣1)=1,展开并整理得x1x2=x1+x2,即.(11分)所以的取值范围为(2﹣lg2,2).(12分)【点评】本题考查实数值的求法,考查代数式的值的取值范围的求法,是中档题,解题时要认真审题,注意函数性质的合理运用. 9.(2015秋•长沙校级期中).已知幂函数的图象关于y轴对称,且在区间(0,+∞)上是减函数,(1)求函数f(x)的解析式;(2)若a>k,比较(lna)0.7与(lna)0.6的大小.【分析】(1)利用幂函数的性质,结合函数的奇偶性通过k∈N*,求出k的值,写出函数的解析式.(2)利用指数函数y=(lna)x的性质,把不等式大小比较问题转化为同底的幂比较大小,即可得出答案.【解答】解:(1)幂函数的图象关于y轴对称,所以,k2﹣2k﹣3<0,解得﹣1<k<3,因为k∈N*,所以k=1,2;且幂函数在区间(0,+∞)为减函数,∴k=1,函数的解析式为:f(x)=x﹣4.(2)由(1)知,a>1.①当1<a<e时,0<lna<1,(lna)0.7<(lna)0.6;②当a=e时,lna=1,(lna)0.7=(lna)0.6;③当a>e时,lna>1,(lna)0.7>(lna)0.6.标准文案 实用文档【点评】本题是中档题,考查幂函数的基本性质,考查不等式的大小比较,注意转化思想的应用. 10.(2014秋•旌阳区校级月考)已知幂函数g(x)=(m2﹣2)xm(m∈R)在(0,+∞)为减函数,已知f(x)是对数函数且f(﹣m+1)+f(﹣m﹣1)=.(1)求g(x),f(x)的解析式;(2)若实数a满足f(2a﹣1)<f(5﹣a),求实数a的取值范围.【分析】(1)根据题意,求出m的值,得出g(x)的解析式,再求出f(x)的解析式;(2)根据题意,利用f(x)的单调性,列出不等式组,求出实数a的取值范围.【解答】解:(1)∵幂函数g(x)=(m2﹣2)xm(m∈R)在(0,+∞)上为减函数,∴,解得m=﹣,∴g(x)=;又∵f(x)是对数函数,且f(﹣m+1)+f(﹣m﹣1)=,∴设f(x)=logax(a>0且a≠1),∴loga(﹣m+1)+loga(﹣m﹣1)=,即loga(m2﹣1)=loga2=,解得a=4,∴f(x)=log4x;(2)∵实数a满足f(2a﹣1)<f(5﹣a),且f(x)=log4x在(0,+∞)上单调递增,∴,解得;即<a<2,∴实数a的取值范围是(,2).【点评】本题考查了函数的性质与应用的问题,也考查了不等式的解法与应用问题,是基础题目. 标准文案 实用文档11.(2013秋•大姚县校级期末)函数f(x)=是偶函数.(1)试确定a的值,及此时的函数解析式;(2)证明函数f(x)在区间(﹣∞,0)上是减函数;(3)当x∈[﹣2,0]时,求函数f(x)=的值域.【分析】(1)根据f(x)是偶函数,f(﹣x)=f(x),求出a=0;(2)用定义证明f(x)在(﹣∞,0)上是减函数;(3)由(2)得,根据f(x)在[﹣2,0]的单调性,求出f(x)在[﹣2,0]上的值域.【解答】解:(1)∵f(x)是偶函数,∴f(﹣x)=f(x),即=,∴x2+ax﹣3=x2﹣ax﹣3;∴a=0,∴f(x)=;(2)证明:任取x1、x2∈(﹣∞,0),且x1<x2;∴==;∵x1<x2<0,∴x1+x2<0,x1﹣x2<0,∴(x1+x2)(x1﹣x2)>0,∴>1,即f(x1)>f(x2);∴f(x)在(﹣∞,0)上是减函数;(3)由(2)知,f(x)在(﹣∞,0)上是减函数;∴当x∈[﹣2,0]时,f(﹣2)==2,f(0)=;∴函数f(x)在[﹣2,0]上的值域是[,2].【点评】本题考查了函数的奇偶性的应用,单调性的证明,以及利用函数的单调性求函数值域的问题,是综合题. 12.(2011•福建模拟)如图,点A、B、C都在幂函数的图象上,它们的横坐标分别是a、a+1、a+2又A、B、C在x轴上的射影分别是A′、B′、C′,记△AB′C的面积为f(a),△A′BC′的面积为g(a)(1)求函数f(a)和g(a)的表达式;(2)比较f(a)与g(a)的大小,并证明你的结论标准文案 实用文档【分析】(1)间接法求f(a),利用f(a)=S△AB'C=S梯形AA'C'C﹣S△AA'B'﹣S△CC'B'求出f(a)的值,直接法求g(a)=AC•BB′.(2)比较f(a)与g(a)的大小,用作差法,化简f(a)﹣g(a)到因式乘积的形式,判断符号,从而比较大小.【解答】解:(1)连接AA′、BB′、CC′,则f(a)=S△AB'C=S梯形AA'C'C﹣S△AA'B'﹣S△CC'B'===(),g(a)=S△A′BC′=AC•BB′=BB′=,==,∴f(a)<g(a),【点评】本题考查幂函数的应用,不等式比较大小的方法,体现转化的数学思想. 13.(2011秋•高安市校级期中)已知幂函数的图象关于y轴对称,且在(0,+∞)上是减函数.(1)求m的值;(2)求满足的a的取值范围.【分析】(1)幂函数y=xα的图象关于y轴对称,且在(0,+∞)上是减函数.则必须满足α为偶数且α<0,则易得m的值.(2)再根据幂函数y=xα的单调性,求满足的a的取值范围.【解答】解:(1)∵函数在(0,+∞)上递减,∴m2﹣2m﹣3<0即﹣1<m<3,又m∈N*∴m=1或2,又函数图象关于y轴对称,∴m2﹣2m﹣3为偶数,故m=1为所求.(2)函数在(﹣∞,0),(0,+∞)上均为减函数∴标准文案 实用文档等价于a+1>3﹣2a>0或0>a+1>3﹣2a或a+1<0<3﹣2a,解得故a的取值范围为【点评】幂函数y=xα,α<0时则为减函数;α>0时,幂函数为增函数.要注意α的不同,其定义域是不同的.解不等式时要注意. 14.(2010秋•如东县期末)已知幂函数y=f(x)经过点,(1)试求函数解析式;(2)判断函数的奇偶性并写出函数的单调区间;(3)试解关于x的不等式f(3x+2)+f(2x﹣4)>0.【分析】(1)设y=xa,代入可得a值,从而得到幂函数的解析式.(2)根据函数解析式求出定义域,在考查f(﹣x)与f(x)的关系,依据函数奇偶性的定义作出判断.(3)将不等式化为f(3x+2)>f(4﹣2x),分3x+2与2x﹣4都是正数、都是负数、异号三种情况,依据函数的单调性及函数值范围列出不等式组,最后把各个不等式组的解集取并集.【解答】解:(1)设y=xa,代入,得a=﹣1,∴.(2)定义域(﹣∞,0)∪(0,+∞),又,∴f(x)为奇函数.单调区间(﹣∞,0),(0,+∞)(3)由f(3x+2)+f(2x﹣4)>0得f(3x+2)>﹣f(2x﹣4),即f(3x+2)>f(4﹣2x),①当3x+2>0,4﹣2x>0时,∴,②当3x+2<0,4﹣2x<0时,,x无解,③当3x+2与4﹣2x异号时,,x>2,综上所述,或x>2.标准文案 实用文档【点评】本题考查用待定系数法求函数解析式、奇偶性,求函数单调区间、定义域,以及利用单调性、奇偶性解不等式. 15.(2010秋•盐城校级期末)已知幂函数f(x)=xa和对数函数g(x)=logax,其中a为不等于1的正数(1)若幂函数的图象过点(27,3),求常数a的值,并说明幂函数f(x)的单调性;(2)若0<a<1,且函数y=g(x+3)在区间[﹣2,﹣1]上总有|y|≤2,求a的取值范围.【分析】(1)将点的坐标代入幂函数解析式求出α,据α>0,幂函数单调递增.(2)求出函数的解析式,根据0<a<1时,对数函数单调递减,求出函数的最值,列出不等式求出a的范围.【解答】解:(1)∵幂函数的图象过点(27,3),∴3=27α∴,∴故函数在(﹣∞,+∞)上是单调增函数(2)y=g(x+3)=loga(x+3)∵0<a<1,∴y=loga(x+3)在区间[﹣2,﹣1]上单调递减所以当x=﹣2时y取得最大值0,当x=﹣1时y取得最小值loga2∵|y|≤2∴﹣loga2≤2【点评】本题考查利用待定系数法求函数的解析式、幂函数的性质、对数函数的单调性及解对数不等式. 16.(2007秋•虹口区校级期末)已知幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数(1)求m的值和函数f(x)的解析式(2)解关于x的不等式f(x+2)<f(1﹣2x).【分析】(1)利用幂函数的性质,结合函数的奇偶性通过m∈Z,求出m的值,写出函数的解析式.(2)利用函数的性质,函数的定义域,把不等式转化为同解不等式,即可求出不等式的解集.【解答】解:(1)幂函数(m∈Z)的图象关于y轴对称,且在区间(0,+∞)为减函数,所以,m2﹣4m<0,解得0<m<4,因为m∈Z,所以m=2;函数的解析式为:f(x)=x﹣4.(2)不等式f(x+2)<f(1﹣2x),函数是偶函数,在区间(0,+∞)为减函数,标准文案 实用文档所以|1﹣2x|<|x+2|,解得,又因为1﹣2x≠0,x+2≠0所以,【点评】本题是中档题,考查幂函数的基本性质,考查不等式的解法,注意转化思想的应用. 17.已知函数f(x)=(m﹣1)为幂函数,g(x)=x+f(x).(1)求证:函数g(x)是奇函数;(2)根据函数单调性定义证明:函数g(x)在[2,+∞)上是增函数.【分析】(1)因为只有y=xα型的函数才是幂函数,所以只有,m﹣1=1,函数f(x)=(m﹣1)才是幂函数,据此得出m.然后再证明其是奇函数;(2)根据函数的单调性证明即可.【解答】证明:(1)有f(x)为幂函数,得m﹣1=1,∴M=2,∴f(x)=,(x≠0),∴g(x)=,由g(﹣x)=(﹣x)+=﹣(),∴函数g(x)在(﹣∞,0)∪(0,+∞)上是奇函数;(2)设任意的x1,x2∈[2,+∞),且x1<x2,∴g(x1)﹣g(x2)=(=,由x1,x2∈[2,+∞),且x1<x2,得:x1﹣x2>4,∴g(x1)﹣g(x2)<0,即g(x1)<g(x2),函数g(x)在[2,+∞)上是增函数.【点评】本题主要考查幂函数的定义,函数的单调性,属于基础题. 18.已知幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.(1)求函数f(x)的解析式;(2)设函数g(x)=+2x+c,若g(x)>2对任意的x∈R恒成立,求实数c的取值范围.标准文案 实用文档【分析】(1)由幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.可得﹣m2+2m+3>0,且﹣m2+2m+3为偶数,解出即可得出.(2)函数g(x)=+2x+c=x2+2x+c,g(x)>2,化为c>﹣x2﹣2x+2=﹣(x+1)2+3,依题意,c>[﹣(x+1)2+3]max.【解答】解:(1)∵幂函数f(x)=x(m∈Z)为偶函数,且在区间(0,+∞)上是单调增函数.∴﹣m2+2m+3>0,且﹣m2+2m+3为偶数,解得m=1,∴f(x)=x4.(2)函数g(x)=+2x+c=x2+2x+c,g(x)>2,化为c>﹣x2﹣2x+2=﹣(x+1)2+3≤3.∵g(x)>2对任意的x∈R恒成立,∴c>[﹣(x+1)2+3]max=3,当且仅当x=﹣1时取等号.∴实数c的取值范围是c>3.【点评】本题考查了幂函数的性质、恒成立问题的等价转化方法、二次函数的单调性,考查了推理能力与计算能力,属于中档题. 标准文案

10000+的老师在这里下载备课资料