2022年高中数学第三章函数的应用3.1函数与方程3.1.1方程的根与函数的零点 课件 (人教A版必修1)
加入VIP免费下载
加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
花拉子米(约780~约850)给出了一次方程和二次方程的一般解法。阿贝尔(1802~1829)证明了五次以上一般方程没有求根公式。方程解法史话秦九韶(公元1202-1261),系统地总结和发展了高次方程数值解法,提出了“正负开方术”,此法可以求出任意次代数方程的正根 问题探究方程3x+3=0的根与函数y=3x+3的图象有什么关系? -112-2问题探究 我们如何对方程f(x)=0的根与函数y=f(x)的图象的关系作进一步阐述?问题探究 方程的根和函数的零点 我们知道,令一个一元二次函数y=ax2+bx+c(a≠0)的函数值y=0,则得到一元二次方程ax2+bx+c=0(a≠0)。思考一元二次方程ax2+bx+c=0(a≠0)的根与二次函数y=ax2+bx+c(a≠0)的图象有什么关系?思考讨论 以a>0为例方  程x2-2x-3=0x2-2x+1=0x2-2x+3=0方程的根函  数y=x2-2x-3y=x2-2x+1y=x2-2x+3函数y=ax2+bx+c(a>0)的图象函数的图象与x轴的交点结论:一元二次方程的实数根就是相应二次函数图象与x轴交点的横坐标.归纳:x1=-1,x2=3x1=x2=1无实数根2-2-43-112Oy423-112xOxy423-112Oxy两个交点(-1,0),(3,0)一个交点(1,0)没有交点判别式ΔΔ>0Δ=0Δ0)的根两个不相等的实数根x1、x2有两个相等的实数根x1=x2没有实数根x1x2x1(x1,0),(x2,0)(x1,0)问题:其他函数与方程之间也有同样结论吗?请举例! 函数零点的定义:对于函数y=f(x)我们把使f(x)=0的实数x叫做函数y=f(x)的零点(zeropoint)。注意:零点指的是一个实数。零点是点吗? 互动交流2、区别:1、联系:①数值上相等:求函数零点就是求方程的根.②存在性相同:函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点①零点对于函数而言,根对于方程而言.②数目不一定相等问题4:函数的零点与方程的根有什么联系和区别?要解方程2-x=x,即2-x-x=0,只要求函数f(x)=2-x-x的零点! 数学建构方程f(x)=0有实数根函数y=f(x)有零点.函数y=f(x)的图象与x轴有交点辨析练习:判断下列说法的正误:1.函数y=x+1有零点x=-1;2.函数y=x2-2x-3的零点是(-1,0),(3,0);3.函数y=x2-2x-3的零点是-1和3;4..函数没有零点.xyO △>0△=0判别式△=b2-4ac方程ax2+bx+c=0(a≠0)的根函数y=ax2+bx+c(a≠0)的图象函数的零点个数△

10000+的老师在这里下载备课资料