新人教A版必修1 高中数学 3.1.1 方程的根与函数的零点 教案
加入VIP免费下载

新人教A版必修1 高中数学 3.1.1 方程的根与函数的零点 教案

ID:1211856

大小:89.24 KB

页数:4页

时间:2022-08-11

加入VIP免费下载
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天资源网负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
网站客服:403074932
资料简介
课题:§2.5.1方程的根与函数的零点一、教材结构与内容简析函数与方程是中学数学的重要内容.本节是在学习了前两章函数的性质的基础上,结合函数的图象和性质来判断方程的根的存在性及根的个数,从而了解函数的零点与方程的根的关系以及掌握函数在某个区间上存在零点的判定方法;为下节“二分法求方程的近似解”和后续学习的算法提供了基础.  因此本节内容具有承前启后的作用,地位重要.二、教学目标根据本课教学内容的特点以及新课标对本节课的教学要求,考虑学生已有的认知结构与心理特征,我制定以下教学目标:(一)认知目标:1.结合二次函数的图象,判断一元二次方程根的存在性,及根的个数,从而了解函数的零点与方程的根的联系.2.理解并会用函数在某个区间上存在零点的判定方法.(二)能力目标:培养学生自主发现、探究实践的能力.(三)情感目标:在函数与方程的联系中体验数学转化思想的意义和价值三、教学重点、难点本着新课程标准的教学理念,针对教学内容的特点,我确立了如下的教学重点、难点:教学重点:体会函数的零点与方程的根之间的联系,掌握零点存在的判定条件.教学难点:探究发现函数零点的存在性.四、教法分析“将课堂还给学生,让课堂焕发出生命的活力”是我进行教学的指导思想,充分发挥教师的主导作用和学生的主体作用.采用“启发—探究—讨论”式教学模式五、教学过程(一)设问激疑,创设情景(二)启发引导,形成概念(三)初步运用,示例练习(四)讨论探究,揭示定理(五)观察感知,例题学习(六)知识应用,尝试练习(七)反思小结,培养能力(八)课后作业,自主学习五、教学过程(一)设问激疑,创设情景问题1求下列方程的根.(1);(2);(3)x3+x2+1=0(4).设计意图:由简单到复杂,使学生认识到有些复杂的方程用以前的解题方法求解很不方便,需要寻求新的解决方法,让学生带着问题学习,激发学生的求知欲(一)设问激疑,创设情景问题2观察下表(一),求出表中一元二次方程的实数根,画出相应的二次函数图象的简图,并写出函数图象与x轴交点的坐标方程函数PAGE1 函数图象(简图)方程的实数根函数的图象与轴的交点设计意图:有利于培养学生思维的完整性,也为学生归纳方程与函数的关系打下基础问题3若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?方程的根函数的图象(简图)图象与x轴的交点设计意图: 把具体的结论推广到一般情况,向学生渗透“从最简单、最熟悉的问题入手解决较复杂问题”的思维方法,培养学生的归纳能力.(二)启发引导,形成概念1、函数的零点:对于函数,把使成立的实数叫做函数的零点辨析练习:函数的零点是:()A.(-1,0),(3,0);  B.x=-1; C.x=3;D.-12、等价关系方程有实数根函数的图象与轴有交点函数有零点.设计意图:利用辨析练习,来加深学生对概念的理解.目的要学生明确零点是一个实数,不是一个点.引导学生得出三个重要的等价关系,体现了“化归”和“数形结合”的数学思想,这也是解题的关键.(三)初步运用,示例练习例1:求函数f(x)=2x2+3x-7的零点。小结:求函数零点的步骤:变式练习:求下列函数的零点.(1);(2).设计意图:巩固函数零点的求法,渗透二次函数以外的函数零点情况.进一步体会方程与函数的关系(四)讨论探究,揭示定理问题4:函数y=f(x)在某个区间上是否一定有零点?怎样的条件下,函数y=f(x)一定有零点?(1)观察二次函数的图象:在区间上有零点______;_______,_______,·_____0(<或>).在区间上有零点______;·____0(<或>).PAGE1 (2)观察下面函数的图象在区间上______(有/无)零点;·_____0(<或>).在区间上______(有/无)零点;·_____0(<或>).在区间上______(有/无)零点;·_____0(<或>).(3)观察屏幕上的函数图象:若函数在某区间内存在零点,则函数在该区间上的图象是   (间断/连续);含零点的某一较小区间中以零点左右两边的实数为自变量,它们各自所对应的函数值的符号是   (相同/互异)由以上探索,你可以得出什么样的结论?讨论:(1)从这一结论中可看出,函数具备了哪些条件,就可断言它有零点存在呢?(2)如果函数具备上述两个条件时,函数有多少零点呢?(3)如果把结论中的条件“图象连续不断”除去不要,又会怎样呢?(4)如果把结论中的条件“f(a)f(b)<0’’去掉呢?(5)若函数y=f(x)在区间(a,b)内有零点,一定能得出f(a)·f(b)

10000+的老师在这里下载备课资料