第1课时 方程的根与函数的零点1.了解方程的根与函数零点的概念,会利用零点的概念解决简单的问题.2.理解零点存在性定理,会利用零点存在性定理判断零点的存在性或者零点所在的范围.3.能够运用函数思想、数形结合思想和化归思想解决方程的根的问题.一个小朋友画了两幅图:问题1:上面的两幅图中哪一幅能说明图中的小朋友一定渡过河?显然,图1说明了此小朋友一定渡过河,但对于图2,则无法判断,用数学的角度来看,如果把小朋友运动的轨迹当作函数图象,小河看作x轴,那么问题即转化为函数图象与x轴是否存在交点.问题2:(1)什么是函数的零点,零点是点吗?
(2)二次函数的零点个数如何判断?(1)对于函数y=f(x),我们把使 的实数x叫作函数y=f(x)的零点.由定义可知零点是一个实数不是点. (2)在二次函数y=ax2+bx+c(a≠0)中,当 时,有两个零点;当Δ=0时,有 零点;当 时,没有零点. 问题3:函数y=f(x)的零点,方程f(x)=0的根,函数y=f(x)与x轴交点的横坐标,这三者有什么关系?函数y=f(x)的零点就是方程f(x)=0的实数根,也就是函数y=f(x)的图象与x轴交点的横坐标.事实上,方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.问题4:(1)零点存在性定理的内容是什么?(2)如果函数y=f(x)在区间[a,b]上满足零点存在性定理的条件,即存在零点,那么在(a,b)上到底有几个零点呢?(3)如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且在区间(a,b)内有零点,那么你认为f(a)·f(b)与0的关系是怎样的?请举例说明.(1)零点存在性定理:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有 ,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根. (2)至少有一个.(3)如图所示,可以小于0,可以等于0,也可以大于0.利用零点的概念求零点判断下列函数是否存在零点,如果存在,请求出.(1)f(x)=x+3x;(2)f(x)=x2+2x+4;(3)f(x)=2x-3;(4)f(x)=1-log3x.函数零点所在区间的判定函数f(x)=ex+x-2的零点所在的一个区间是( ).A.(-2,-1) B.(-1,0) C.(0,1) D.(1,2)函数零点的个数判定
函数f(x)=1x+x2-2x有几个零点?(2014年·北京卷)已知函数f(x)=6x-log2x,在下列区间中,包含f(x)零点的区间是( ).A.(0,1)B.(1,2)C.(2,4)D.(4,+∞) 考题变式(我来改编):
第1课时 方程的根与函数的零点知识体系梳理问题2:(1)f(x)=0 (2)Δ>0 一个 Δ