一种科学只有在成功地运用数学时,才算达到完善的地步数学,科学的皇后;数论,数学的皇后哪里有数,哪里就有美代数是搞清楚世界上数量关系的智力工具数学是科学的大门和钥匙方程的根与函数的零点
在人类用智慧架设的无数座从未知通向已知的金桥中,方程的求解是其中璀璨的一座,虽然今天我们可以从教科书中了解各式各样方程的解法,但这一切却经历了相当漫长的岁月.我国古代数学家已比较系统地解决了部分方程的求解的问题。如约公元50年—100年编成的《九章算术》,就给出了求一次方程、二次方程和三次方程根的具体方法…
问题提出1.对于数学关系式:2x-1=0与y=2x-1它们的含义分别如何?2.方程2x-1=0的根与函数y=2x-1的图象有什么关系?3.我们如何对方程f(x)=0的根与函数y=f(x)的图象的关系作进一步阐述?
问题探究
方程x2-2x+1=0x2-2x+3=0y=x2-2x-3y=x2-2x+1函数函数的图象方程的实数根x1=-1,x2=3x1=x2=1无实数根函数的图象与x轴的交点(-1,0)、(3,0)(1,0)无交点x2-2x-3=0xy0-132112-1-2-3-4..........xy0-132112543.....yx0-12112y=x2-2x+3问题2求出表中一元二次方程的实数根,画出相应的二次函数图像的简图,并写出函数的图象与x轴的交点坐标新知探究(一):方程的根与函数零点
方程ax2+bx+c=0(a>0)的根函数y=ax2+bx+c(a>0)的图象判别式△=b2-4ac△>0△=0△<0函数的图象与x轴的交点有两个相等的实数根x1=x2没有实数根xyx1x20xy0x1xy0(x1,0),(x2,0)(x1,0)没有交点两个不相等的实数根x1、x2问题3若将上面特殊的一元二次方程推广到一般的一元二次方程及相应的二次函数的图象与x轴交点的关系,上述结论是否仍然成立?
函数的图象与轴交点的横坐标就是相应方程的实数根具体的二次函数与相应的二次方程的关系推广一般的二次函数与相应的二次方程的关系推广一般的函数与相应方程的关系
思考4:对于函数y=f(x),我们把使f(x)=0的实数x叫做函数y=f(x)的零点,那么函数y=f(x)的零点实际是一个什么数?思考5:函数y=f(x)有零点可等价于哪些说法?
对于函数y=f(x),叫做函数y=f(x)的零点。方程f(x)=0有实数根函数y=f(x)的图象与x轴有交点函数y=f(x)有零点函数的零点定义:等价关系使f(x)=0的实数x零点的求法代数法图像法
练习:(1)在二次函数 中,ac